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Abstract

Distributed applications, especially the ones being I/O intensive, often access the storage

subsystem in a non-sequential way (stride requests). Sincesuch behaviors lower the overall

system performance, many applications use parallel I/O libraries such as ROMIO to gather

and reorder requests. In the meantime, as cluster usage grows, several applications are of-

ten executed concurrently, competing for access to storagesubsystems and, thus, potentially

canceling optimizations brought by Parallel I/O libraries.

The aIOLi project aims at optimizing the I/O accesses within the cluster and providing a

simple POSIX API. This article presents an extension ofaIOLi to address the issue of disjoint

∗This work has been done within the ID laboratory jointly supported by CNRS, INPG, INRIA, and UJF and the

project LIPS between INRIA and BULL Lab. Computer resourcesare provided by the grid5000 french experimental

grid (http://www.grid5000.fr/).
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accesses generated by different concurrent applications in a cluster. In such a context, good

trade-off has to be assessed between performance, fairnessand response time. To achieve

this, an I/O scheduling algorithm together with a «requests aggregator» that take into account

both application access patterns and global system load, have been designed and merged into

aIOLi. This improvement led to the implementation of a new genericframework pluggable

into any I/O file system layer. A test composed of two concurrent IOR benchmarks showed

improvements on read accesses by a factor ranging from 3.5 to35 with POSIX calls and from

3.3 to 5 with ROMIO, both reference benchmarks executed on a traditional NFS server without

any additional optimizations.

1 Introduction

I/O bottlenecks have always been a major issue in Computer Science and it is likely to continue as

performances increase slower for I/O hardware than for CPU and memory. This gap is widened by

the increasing use of HPC platforms and the growing number ofparallel I/O intensive scientific ap-

plication. In this context, the I/O subsystem is stressed both by the overall throughput requirement

and the peculiar access patterns of parallel applications.For instance, disjoint requests delivered

at the same time may generate disk head movements, one of the most time consuming operations

in modern computers (approximately 9ms). But, as shown by several studies [6, 17], parallel I/O

accesses use recurrent determined patterns (based on stride parameters) that are good candidates

for optimizations. This is different from “database accesses” which depend on the selection criteria

and are usually more sparse.

In this article, we focus on multiple concurrent applications that perform parallel I/O accesses

to the storage subsystem. This is a common situation on clusters since most batch schedulers [9],

try to maximize the overall platform usage, leading to concurrent executions. In this case, each

application generates its own recurrent parallel access patterns and parallel access patterns from

distinct applications are interleaved due to concurrency.Thus, the I/O subsystem layer has to

perform optimizations that take advantage of regularity ofaccesses from each application while

balancing storage access between them. Our work focuses on non dedicated clusters where all ap-

plications are considered of equal importance. This translates into multiple optimization criterion:
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throughput, fairness and response time.

I/O parallel accesses optimization issues have been addressed by several researchers. Proposed

solutions can be classified in two main categories:

• Parallel File systems [4, 21, 22] manage to exploit as efficiently as possible hardware capa-

bilities while taking into account distributed file system constraints (coherency, fault toler-

ance, remote accesses, . . . ). Most of these systems do not useI/O scheduling strategies as

they are just built on schedulers located at block device layer (section 2.3). At this low level,

due to kernel and file system implementation (see section 3.1) parallel applications infor-

mation is not available and parallel I/O access patterns cannot be exploited for throughput

optimization.

• Parallel I/O Libraries are focused on parallel I/O aspects and portability constraints inside

a single application. They use a specific API to enable the developer to express I/O access

patterns. The underlying optimization algorithm exploit these patterns to aggregate indi-

vidual requests into larger ones (see section 2.1). Unfortunately, beside the complexity of

the API of these systems, storage access balance between applications is not addressed by

I/O libraries. Moreover, individual application optimizations are likely to be canceled by

the interleaving of concurrent accesses made by distinct applications (see multi-applicative

MPI/IO tests in section 4).

When dealing with concurrent parallel applications, it is important to handle requests in a

global manner to provide a good trade-off between performance and balance between applications.

Performance alone could be optimized by handling all the I/Orequests from one application before

serving another one. This provides good throughput but starves the waiting applications. Such a

policy does not take into account response time and fairnesscriteria which are mandatory in a

multiple applications environment.

We propose to design a high level infrastructure made of two main components: a transparent

parallel I/O aggregation mechanism for throughput optimization and a scheduling algorithm that

balance service provision between applications. Our main contribution is to integrate these two

elements into a generic framework pluggable into any existing I/O system. This framework do

not require any change in the application code (it only interact with the I/O subsystem). It only
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requires a minimal change in the I/O layer code to subscribe to theaIOLi services (section 3.2).

To take advantage of a global view of all the accesses withoutany negative impact on scalability,

aIOLi should be plugged into any already existing I/O centralization point.

We implemented our proposal as a Linux module and evaluated it on a Network File System

server. Even if NFS is not really suited to high performance I/O, it remains the standard configura-

tion for small and medium sized clusters. The server has to deal with huge amounts of simultaneous

requests, a good testbed to evaluate the interest of a high level scheduler like ours.

The rest of this paper is organized as follows: section 2 briefly presents the available I/O

optimizations and their limits. Section 3 is focused on the architecture of our framework: the

interest of a higher level scheduler, the architecture of the current version ofaIOLi and the two

integrated mechanisms are introduced. Section 4 gives someexperimental results. Eventually,

section 5 describes future extensions as well as possible improvements and section 6 concludes the

paper.

2 Background

In this section we present main ideas used in parallel file-systems, in parallel I/O libraries or both.

Most of them aim at optimizing I/O throughput for one parallel application (collective approaches,

prefetch) while other do not take advantage of accesses regularity (scheduling). The goal of this

section is to give an overview of I/O optimizations in general and to explain why they are not suited

to the multi-applicative context.

2.1 Collective Approaches

Different processes of a parallel application usually sendmany small, non-contiguous requests

simultaneously to the I/O server without checking for aggregation opportunities. Collective I/O

methods solve this problem by merging different requests into a bigger one and issuing an aggre-

gated request. This concept can be applied at different layers in a distributed architecture: at disk

level [12], at server side [23] or also at client side [25].

The resulting performance of collective approaches dependon the underlying architecture

(middleware, network interconnection and file system implementation) and the use of specific
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“tuning” routines (MPI I/O hints functions) is often required. Furthermore, as pointed in [1], such

approaches imply expensive synchronization mechanisms. In the case of writes, Ma et al. pro-

posed to use active buffering with threads [15] to overlap I/O with computation efficiently. This

lessen the impact of synchronization but require a modified ROMIO library.

Overall the collective approaches do not take into account the interleaving of non contiguous

access resulting from concurrent execution of several applications. As shown in section 4 this lead

to severe performance degradation.

2.2 Cache and Prefetching

Caching is a widespread technique used to reduce the number of accesses to hard drives and thus

improve performance of the I/O system (see [3] for instance). In centralized/local systems, cache

management is not very difficult, it significantly differs indistributed and parallel environments

where strict coherency protocols are complex and impact performance. Some systems avoid this

problem by sacrificing the client side file caching and keeping caching only on I/O nodes. Collec-

tive caching [27] is another method to improve I/O performance of parallel applications. It is based

on the idea that all processes running the same application should be considered as a single client of

a parallel file system. A modified MPI version provides user-level file caching by distributing the

cached data equally between processes. Unfortunately, this mechanism requires a first step, where

data are redistributed to different nodes to build the cachesystem. This step can be expensive for

large workloads.

Usually, as mentioned in [26], several levels of cache couldlead to inefficiency if, for each

cache request, a cache miss occurs. Overall, caching can be combined withaIOLi but it do not

solve the same problem: multi-applications balancing and initial fetch of data are not addressed.

Prefetching techniques are based on implicit or explicit anticipation of I/O requests. Some

parallel intensive I/O programs reduce I/O congestion by retrieving explicitly data in a sequential

way from one client (in a synchronous or asynchronous mode) and redistribute them to all partici-

pants. Such an approach leads to good performance in a non-concurrent environment thanks to the

gain provided by theRead Ahead technique[7]. Daniel Ellard and Margo Seltzer [8] modified the

FreeBSD 4.6 NFS server to improve the read-ahead heuristic strategy. Their new algorithm handle
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stride access patterns in a better way.

Unfortunately, in multi applications environments, theseprefetching methods generate parallel

I/O problems. As in the case of collective approaches, they do not take into account the interleaving

of non contiguous access resulting from concurrent execution of several applications.

2.3 I/O Sheduling Strategies

Several scheduling algorithms were proposed to minimize the completion time of a batch of I/O

operations. These algorithms usually fall in two categories: disk scheduling [24] and parallel I/O

scheduling [5, 11]. The first one tends to limit disk head movements while the other one distributes

parallel I/O operations to different I/O servers to minimize the overall response time.

Disk scheduling algorithms, because they are all implemented at a low level, cannot have a

good overview of distributed applications accessing the file system. Besides being limited by the

size for their queues, they are strictly dependent on the implementation of the upper file system:

for instance, if the file system is synchronous and mono-threaded, only one request can be handled

at the same time which limits potential optimizations (section 3.1 for more details). As a direct

consequence, such approaches are not suited to large workloads generated by HPC Intensive I/O

applications.

Parallel I/O scheduling, in contrast to low level schedulers, try to exploit parallel I/O access

patterns. In PVFS [20] a model for predicting performance ofa system for a given workload is

used. Based on this model, the system can choose dynamicallythe most appropriate scheduling

algorithm. In the Clusterfile parallel file system [10], a scheduling heuristic tries to involve all

the I/O servers in the system at the same time to maximize their utilization. However, to the best

of our knowledge, these systems do not address the interleaving of multiple applications. Hence,

they suffer from concurrent disjoint access resulting fromthe simultaneous execution of several

applications.

3 System Overview

The first implementation of theaIOLi prototype [13] provided an efficient transparent management

of parallel I/O for one application within a SMP node. All I/Orequests, before being sent to a
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remote server, were analyzed to find aggregation possibilities and reordered to favor sequentiality.

The encouraging results of this first implementation have motivated the study of similar approaches

but at cluster level [14]. In this intermediate work, we chose a client/server model comparable to

the PANDA architecture [23]. Unfortunately, the lack of global memory and global clock made

the management difficult and the expected improvements werenot reached.

In this new study, we opted to moveaIOLi from the applications to the storage system layer in

order to collect more informations both about applicationsand global system load. Indeed, one of

the main idea of this new proposition is to exploit the existing centralization point of file system

architectures to plug our new framework. Therefore,aIOLi do not compromise the I/O system

scalability by adding new bottlenecks.

3.1 Preliminary study

As mentioned in former sections, low-level scheduler do nothave a global view of the I/O accesses

made by a parallel application. This is due to limitations inthe queues size and in the I/O server

implemented on top of them.

We checked aggregation capabilities of these schedulers using the IOR benchmark presented

in section 4.3. The experiments consists in evaluating IOR over 32 MPI instances decomposing a

4GB file on a Linux NFS server exporting an ext3 file-system stored on a single IDE disk (57MB/s

peak). This is the same hardware configuration as in section 4.

Test have been performed on each Linux I/O low level scheduler, making the file access granu-

larity vary from 8KB to 4096KB and by using POSIX API. To provide more aggregation opportu-

nities to the scheduler, the number of activenfsd daemons ranged from 8 (default configuration)

to 512 (more incoming simultaneous requests). The results are similar whatever the I/O scheduler

in use, we only present the default one: anticipatory scheduler on the right of figure 1 (the results

for all the other schedulers can be found on theaIOLi websitehttp://aioli.imag.fr).

As we can notice, the greater the number of daemons, the better the performances are. Nev-

ertheless, even with 512 daemons, the low-level scheduler performance is far from sequential per-

formance (around 50MB/sec) in most cases.
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Figure 1: low scheduler impacts on a traditional NFS server and a NFS server plugged with aIOLi

4 GBytes file decomposition (IOR benchmark) on 32 MPI instances deployed on 32 nodes.

Usual NFS using 8 to 512 daemons on top of the anticipatory scheduler (left) and plugged toaIOLi (right).

3.2 A High Level I/O Scheduling Framework

The purpose of theaIOLi framework is to provide generalized I/O scheduling strategies indepen-

dent of any storage medium or I/O subsystem. The latest version of aIOLi can extend almost any

existing I/O management system using a simple pluggin mechanism.

This version uses a new architecture (figure 2) in which anaIOLi client can be the whole

kernel I/O subsystem, a single remote file system or any otherI/O intensive service. Each client is

connected to anaIOLi I/O controller which implements the interface to theaIOLi framework. All

theaIOLi client should be able to react to the two following events:

• a new request is delivered to the client. In this case, the client should posts this new request

to the queue of the relatedaIOLi I/O controller.

• theaIOLi I/O controller notifies the client that one or more of its requests can be processed.

The client then should process it.

We choose to let the clients process themselves the requeststhey posted. This way,aIOLi remains

generic and independent, it just acts as an aggregator and scheduling service.

An aIOLi I/O controller can be in charge of scheduling requests from one or several clients at

the same time. For instance, on a remote NFS server which exports an Ext3 partition, anaIOLi I/O

8



Request Queue
Management

Sched.
Instance

Schedulers
Pool

. . . . . . . . .

Statistics
Control

Device
Block

Device
Block Network

aIOLi Client naIOLi Client 1
(Virtual File System)

Sched. Sched.
Instance Instance

aIOLi System

I/O Systems

. . .
(Network File System)

I/O ControllerI/O ControllerI/O Controller

Figure 2: Architecture of the aIOLi system

Clients (I/O systems) put their incoming requests in the relatedaIOLi queues and are notified when any of

them should be processed. To prevent coherency issues, clients remain in charge of this processing.

controller can be used to schedule both requests incoming tothe NFS server and local requests to

the file-system. In this case, the NFS server and the Ext3 file-system will be two clients associated

to the same I/O controller. This allowsaIOLi to be plugged where needed (on an independant file-

system or on the I/O layer of the whole system) to perform fine optimizations at the appropriate

level.

An aIOLi scheduler has to be chosen when initializing an I/O controller. These schedulers

exploit file id, request size and start offset to chose the appropriate issue order. Thus, they deeply

differ from low level schedulers mainly based on disk sectorplacement (section 2.3). Currently,

aIOLi ships with two different schedulers1: a simple FIFO and a MLF variant discussed in section

3.4. Additional scheduling algorithms are easy to add either directly to aIOLi or as an external

kernel module.

Regarding coherency, to prevent any issue, an unique timestamp is associated to each incoming

request. Using these timestamps, the strict order between write and read accesses for the same

resource can be enforced. Currently, all requests following a write to the same file are blocked by

the system until the completion of this write. This method could be easily improved by using a

1A third one focusing on the interactivity criterion is underdevelopment:Weighted SJF [14].
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finer locking mechanism such as the well-knownByte-Range-Locking.

aIOLi, which was formerly a library, is now a pluggable I/O scheduler. This change makes

extensible and flexible: it is completely independant from applications and can be plugged into any

existing I/O management system. TheaIOLi is now a high-level I/O scheduler : it only requires

generic informations for the requests it handles (offset and size). Our framework also includes a

statistics collector which gather informations about I/O workers (number of requests proceeded,

number of aggregation, average, etc.) either forpost mortem or on-line analysis.

3.3 Aggregation and Virtual Aggregation

The first prototype ofaIOLi [13], was a library dedicated to the optimization of I/O in a single

node. Since we were within a single node (only one operating system), coherency mechanisms

were provided by the underlying file-system stack (single buffer cache) and we implemented a

physical aggregation mechanism: small contiguous requests were merged into a larger one which

was sent by the kernel to the remote file system.

In a distributed environment, the implementation of such mechanisms becomes tedious (be-

cause of data replication, cache invalidation, etc.). Moreover, few file-system provide routines to

access to a group of disjoint file parts (I/O vector). To remain genericaIOLi is able to perform

its optimization using only simple access requests. The“virtual aggregation” mechanism consists

in deciding on an execution order for several requests and let the actual execution of I/O calls to

clients. For instance, the three following requests:read(30,40), read(20,30), read(10,20)2, should

be reordered and executed in the following order:read(10,20), read(20,30), read(30,40). This

way, all the accesses become contiguous.

When I/O systems provide specific routines to handle I/O vectors, aIOLi will use them and

thus apply a “real aggregation”. But, our experiments show that the “virtual aggregation” mecha-

nism is sufficient to reach near-optimal performance: the genericity does not imply a performance

degradation.

2read(x,y): read from offset x to offset y in the same file

10



3.4 Scheduling of I/O Requests on a Cluster

aIOLi provides scheduling strategies to efficiently share the I/Osubsystem among all applications

running on the cluster. As mentioned in section 1, in our case, we aim at providing scheduling

strategies optimizing throughput first, but with a concern for fairness and response time.

3.4.1 Base Scheduling Algorithm

We want both to maximize the overall performance by using parallel I/O aggregation techniques

and maintain a good balance among applications. Unfortunately, throughput, fairness and response

time are incompatible: to be fair and responsive I/O resource access has to be switched regularly

between applications thereby breaking the contiguity of accesses required to reach the maximal

throughput. Thus, our scheduling strategies will consist in the best compromise between perform-

ing maximal aggregation and serving each application in turn. This I/O requests scheduling in our

context is an on-line problem: jobs (requests) keep on arriving during the scheduling process and

the total size of the access (total number of requests) is notknown in advance [2].

The base of our algorithm is a variant of the Multilevel Feedback algorithm (MLF) [18]. The

MLF algorithm is designed to optimize average response timewhile avoiding starvation by grant-

ing to individual waiting requests an adaptive time quantumfor accessing resources (a quantum

that grows with time). We modified MLF to integrate into its mechanics the virtual aggregation

mechanisms. The resulting algorithm can be described as follows:

1. incoming requests are sorted by type (read or write) and inserted into two separate queues

for each file accessed.

2. each request is assigned an initial quantum of zero upon its arrival in the system.

3. aggregation is performed on requests of both queues (readand write): the queues are tra-

versed in offset order and contiguous requests are aggregated into larger virtual requests

which quantum is the sum of individual requests quantum.

4. the quantum of each request is then increased by a fixed value QB (which is rather small to

favor interactivity).
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5. the first request, in offset order within a file and FIFO order between files, which quantum is

large enough to enable its completion is selected for execution.
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Figure 3: A variant of the Multiple Level Feedback algorithm

The figure 3 presents the behavior of our algorithm on a toy example made of two processes

(A1 and A2) accessing a file (file 1) in a stride like manner (with strides of 128K long) and two

processes (A3 and A4) accessing two files (file 2 and file 3) in a synchronous way (one request

after the other). In this example all the accesses are 32K long and QB equals 32K. As with MLF,

the use of small quantum that increase with time gives priority to small requests (not aggregated).

Thus, big virtual requests will remain for some time in the system giving it opportunities for more

aggregation (in other words, throughput optimization). Processing request in their size order is the

optimal strategy to minimize the average response time making our algorithm good for interactive

tasks. Nevertheless, because we bound aggregation and the quantum increases regularly, waiting

aggregated requests will never starve and a decent fairnesswill be maintained. Notice that our

algorithm is a compromise. Indeed, we could improve throughput by removing the quantum system
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and stick to the offset order, but this would degrade response time and fairness as requests would

possibly be delayed for a long time by other ones.

3.4.2 Performance Tuning

Although the preceding algorithm has a good overall behavior, optimizing for several antagonist

criteria at once, it is not able to completely detect and exploit some widespread specific accesses

behavior of common applications:

synchronous accesses applications such ascat make their access in a synchronous fashion, one

byte at a time, waiting for the result before performing the next access. In that case, it should

be advantageous for the server to wait for the next access at the end of the request processing.

This could be done by giving the request a quantum larger thanrequired for its completion:

the extra time can then be used to wait and aggregate consecutive requests as they arrive.

very large accesses most applications generally make either very large or very small accesses

to files. In the case of large accesses, the linear increase rate of the quantum in the base

algorithm does not exploit sufficiently aggregation opportunities. Thus, it should be advan-

tageous to give a larger quantum to consecutive requests to the same file, as long as this

quantum is fully exploited.

very small accesses In the case of small accesses, the quantum given to requests might be too

large (especially for requests of size lower than the base quantum size or requests that have

stayed too long in the system). The issue is that if we use thisextra quantum duration to wait

for aggregation opportunities, this only ends up in uselessdelay.

To address these issues, we take advantage of file accesses history and we adapt dynamically the

quantum size to applications specific behavior. For each fileaccessed, we store the utilization rate

of the quantum given to the last access. If this rate is high, we are likely to perform a large or

synchronous access. In that case we expand the size of the quantum given to requests to this file by

a multiplicative factor. On the contrary, if this utilization rate is low, we are likely to perform small

accesses and we reduce the quantum size accordingly. As a special case, when the utilization rate

is very low the end of the file should have been reached. In thatcase, we simply reset the history

information.
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4 Experiments

Our testing system is a part of the machines from the “grid5000”3 project located at the INRIA

Sophia-Antipolis site. Each node, an IBM eServer 325, is composed of two AMD Opteron (2GHz)

CPUs, 2GB RAM and a 80GB IDE hard-drive (bandwidth estimatedto 57MB/s by thehdparm

command). The cluster is interconnected by a gigabit ethernet network. All nodes were running a

Debian GNU/Linux system with a 2.6.15 kernel. A dedicated NFS server (version 3, TCP, 32Kb

read/write size, sync, cache disabled) on top of an ext3 file-system and several client SMP nodes

have been used.

In a first part, we evaluated the overhead of aIOLi and its impact on scalability for both non

HPC and HPC workloads. Then, we focused our experiments on the multi-application criteria.

The IOR benchmark has been used to evaluate real I/O intensive HPC applications.

4.1 Implemented aIOLi clients

TheaIOLi ’s public interface is composed by three main functions (twooptional complete the API).

Any client aIOLi client has to call the initialization function with at leasttwo callback functions

as arguments: theread andwrite functions from the host I/O system. These functions will be

called whenaIOLi decide on the execution of one ore more requests. Additionaloptional callbacks

can be given toaIOLi to handle “real aggregation”.

Unfortunately, the client code has to be slightly modified (that is the I/O system layer): to

redirect incoming request toaIOLi, it is necessary to add apost call. This is the only intrusive

step when pluggingaIOLi to a client. Up to now, we did not discover a completely transparent

approach.

So far, twoaIOLi clients have been developed. The first one is a NFS (network file system)

server based on the source code from the 2.6.15 Linux kernel.The second one is an extension of

the Linux Virtual File System which handle all I/O operations on a single node. Both of them are

shipped with theaIOLi source code distribution4. Their evaluation led us to the same conclusion.

Therefore, due to space considerations, only NFS experiments will be discussed in this article.

3http://www.grid5000.fr/ .
4http://aioli.imag.fr
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4.2 Overhead and Scalability Impact

4.2.1 Bonnie++

Bonnie++5 is a popular and widely used benchmark to evaluate hard driveand file-system per-

formances. It tests writes, reads and creation of files. The write test consists of three phases : a

file is first written byte by byte, then it is overwritten in a block manner and finally it is read and

overwritten block by block. The two-phase read test is similar to the first two phases of write test.

Although Bonnie++ is often used as a benchmark for clusters,it is not really suited to this task

because: no HPC application access data using a fine granularity (byte by byte) and stride accesses

are not tested.

Nevertheless, we decided to benchmarkaIOLi with Bonnie++ anyway to prove that our system

does not have a negative impact on fine grained sequential performance. Our test consists of two

parts: a first test with one client, then a second test with four clients. Both parts use one NFS server.

We configured Bonnie++ to use 4 GB files (twice the RAM size) andto skip the file creation test.

Results are presented in the table 1.

Write Read

char block rewrite char block

MB/s MB/s MB/s MB/s MB/s

NFS (1 client) 21.69 28.40 2.00 34.84 43.54

aIOLi (1 client) 19.80 28.29 2.03 37.45 48.81

NFS (4 clients) 8.26 8.78 1.68 3.55 3.02

aIOLi (4 clients) 7.41 9.59 1.68 4.74 13.39

Table 1: Bonnie ++ evaluation

As we can notice,aIOLi does not have a significant impact on I/O accesses at a fine granularity.

In this case, requests are mostly satisfied by the NFS cache because the server make access of 32KB

anyway (ourrsize parameter). Thus,aIOLi has no room for further optimizations. It does not

benefit to sequential writes either as they are already handled asynchronously by the system. But,

the performance is greatly improved when four concurrent clients make simultaneous read at a

coarse granularity. In this case the adaptive quantum mechanism used inaIOLi (section 3.4.2)

shows its strenght.

5Bonnie benchmark suite,http://www.coker.com.au/bonnie++
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4.2.2 b_eff_IO benchmark
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Figure 4: scalability impact: usual NFS server (left) and NFS server plugged with aIOLi (right)

To test the impact on scalability of our system, we have used the Effective I/O Bandwidth

Benchmark[19] (b_eff_io), which provide two tests: the first evaluates the average I/O bandwidth

achievable when using the MPI-I/O library and the second gather detailed informations depending

on the access patterns and buffers length.
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The benchmark tests “first write”, “rewrite” and “read” routines using several combinations

for its parameters such as: various parallel access patterns (different kinds of stride like patterns),

collective / non collective accesses, aligned / unaligned accesses. In this test, similar to a single

parallel application, the I/O operations are already optimized by the MPI-I/O library andaIOLi

is not likely to produce further improvements. The goal is only to see the impact ofaIOLi on

a heavily loaded system. The number of clients varied from 2 to 96 (a high load for usual NFS

servers).

The results are presented in figure 4. Regarding the write performance, because the system

handle write requests asynchronously,aIOLi has few room for improvements. As a consequence,

the optimizations it provides are compensated by the overhead of the scheduler. The resulting

performance is roughly the same and scalability is not degraded.

Regarding read performance, thanks to its scheduling strategy,aIOLi performs clearly better

than the NFS server alone. The slight performance degradation when the number of clients in-

creases is due to the CPU cost of processing a RPC request as shown in [16]. We do not present

results for the rewrite test which are similar to the read performance results. Overall, this test

shows thataIOLi does not have any negative impact on I/O system scalability and can even bring

some improvements when aggregation opportunities still exist.

4.3 Multi-application criteria

In this part, experimentations focus on parallel application and multi-application aspects. The I/O

Stress Benchmark Codes6 has been exploited to emulate the behavior of a parallel I/O intensive

application. It consists in a parallel file system code developed by the Scalable I/O project at

Lawrence Livermore National Laboratory. This parallel program performs parallel writes and

reads to/from a file using the POSIX or MPI-IO API and reports the throughput rates.

In a preliminary part, we check that parallel access are efficiently managed by our framework

(aggregation for one application). Indeed, this is necessary as our main objective is to efficiently

manage I/O in presence of multiple and concurrent parallel applications. Then, we evaluate the

impact of one application on another one: 1./ we evaluate thedegradation implied by one parallel

6IOR benchmark,http://www.llnl.gov/asci/purple/benchmarks/limited/ior/
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I/O intensive application on a less I/O dependant program 2./ we analyse the behavior of two

concurrent I/O intensive applications. Finally, the performances of a traditional NFS Server and a

server exploitingaIOLi are compared using a workload composed by ten distinct applications.

4.3.1 Multi-node coordination

In this experiment, one IOR instance has been deployed on 32 single processor nodes. The file size

has been set to 4GBytes and the file access granularity rangesfrom 8KBytes to 4MBytes.
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Figure 5: 1 IOR - Validation of aggregation mechanisms inside aIOLi

4 GBytes file decomposition (IOR benchmark) on 32 MPI instances deployed on 32 nodes.

The figure 5 presents the performance provided by the usual NFS server accessed with POSIX

(“Posix” curve), the usual NFS server accessed with collective MPI I/O API (“MPI-I/O” curve)

and the POSIX API on top of an NFS server plugged to theaIOLi framework (“aIOLi” curve).

On this test, MPI-I/O has been ran without file view but the results with file view are similar.

The “Posix-Ref” curve has been obtained by prefetching the data from one node. From the point of

view of the NFS server this match a large sequential synchronous access (like acat). The dashed

line is the hard drive sustained bandwidth (obtained with the hdparm command), it is an upper

bound for the performance of our NFS server. NFS Version 3 provides two modes for write access:

synchronous and asynchronous, both were evaluated. Nevertheless, we only present results for the

asynchronous write mode as the performance in synchronous mode is poor for all the compared

systems and is not suited to HPC computing.
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Regarding the read performance, thanks to its adaptive algorithm, aIOLi provides clearly bet-

ter performance than Posix and MPI-I/O. It even surpasses Posix-ref when a sufficient number of

aggregation opportunities exists. The only situations when Posix-ref performs better is when the

granularity is between 64KB and 512KB : greater than the NFS access granularity (32KB in our

case). In this case, each client access is resolved by very few NFS requests and because of concur-

rency these requests are disjoints. Because of the low number of requests, the scheduling window

on whichaIOLi works is too small and optimizations are limited. The problem does not appear

neither with fine granularities (thanks toaIOLi offset order policy) nor with coarse granularities

(because the scheduling windows is sufficiently large to findaggregation opportunities).

Regarding the write performance, once againaIOLi performs better than Posix and MPI-IO. In

this case its performance is very close to the performance ofPosix-ref. This is because Posix-ref

write in asynchronous mode and benefit from write-behind policy.

Overall,aIOLi is still better than any other system in most cases. In general, it is comparable

to Posix-ref and clearly better than both Posix and MPI-I/O.

4.3.2 Several applications

In this part, experiments focus on the mutual hindering generated by several applications execut-

ing concurrently. These experiments are composed of two parts: firstly a parallel I/O intensive

application and a non I/O intensive program started during its execution and secondly, two similar

I/O intensive applications striving for resources access.This test aim at demonstrating the balanc-

ing capabilities ofaIOLi: no application is sacrificed to another one and all benefit from aIOLi

optimizations. Time completion is measured as it is more relevant when applications are different.

Impact of an I/O intensive application on a less intensive one

The parallel I/O intensive applications consist in one IOR instance deployed on 32 single pro-

cessor nodes. The file size has been set to 4GBytes and the file access granularity ranges from

8KBytes to 4MBytes. For this application, there are two cases: in case one, Posix calls are used

for accesses and in the second case, MPI-I/O is used for accesses.

The non I/O intensive program is acat-like program retrieving sequentially a 16MB file on a

single node using granularities ranging from 8KB to 512KB. This latter application is small (run
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Figure 6: Impact of an I/O intensive application on a lesser one

alone, it completes in roughly 2s) and is started during the execution of the first one (15s after its

beginning). For this application, Posix is always used for accesses. As all the results lead to the

same conclusion, we only present tests using a cat granularity of 32KB7. Due to the large difference

between the completion times, a log scale for the Y axis has been used. The figure 6 presents the

results of this test.

On the left, the parallel I/O intensive application use the POSIX routines. As we can see,aIOLi

improves the efficiency for both applications. For smaller granularities and due to the adaptive

window, the IOR application benefits more than thecat program. Indeed, as we mentioned in the

former section,aIOLi optimizes sequential accesses when large granularities are exploited.

On the right, the parallel I/O intensive application has been launched with the MPI I/O optimi-

sations (thecat program was still based on the POSIX API). First, we can note thataIOLi under

POSIX (curve IOR-aIOLi on the left) provides better performance than the MPI I/O under usual

NFS server (curve IOR-NFS on the right) for the IOR benchmark. Moreover, as we expected, the

MPI I/O routines reduce congestion issues on the NFS server side which lead to better performance

for thecat program (curve cat-NFS on the left vs cat-NFS on the right). However, when we com-

pare the IOR-NFS and IOR-aIOLi on the right, we can see thataIOLi does not benefit from the

MPI I/O optimization. Indeed the synchronisation overheadimplied by MPI I/O is added toaIOLi

performance.

7other results can be found on theaIOLi website: http://aioli.imag.fr.
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Impact of two I/O intensive applications

In this second part, we analyse the behavior of two concurrent IOR instances. Each instance is

made of 32 process deployed on a distinct groups of 16 single processor nodes.
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Figure 7: Impact of an I/O intensive application on a second one

As expected in figure 7, the execution of two I/O intensive applications degrades performances

for all instances, butaIOLi minimizes this phenomenon while balancing the I/O accessesbetween

them. Even, if the collective MPI I/O performances show a slight improvement for small granular-

ities, they quickly reach the POSIX ones for granularities greater than 128Kb. Moreover, even if

the MPI I/O collective approach is improved byaIOLi (aIOLi curves on the right), the best result

is provided by the standard API POSIX underaIOLi (aIOLi curves on the left).aIOLi takes advan-

tage of all the freedom given by Posix without synchronization overhead, this is why it performs

better than MPI-IO. For the smallest granularity, Posix requires more than 1 hour and half, MPI

I/O needs 11 minutes and 30 seconds whereasaIOLi only takes 2 minutes and 35 seconds.

Regarding the fairness, the 2 IOR benchmarks have been launched at the same time: at worst,

the gap between the two completion time is 8.5 seconds for 8Kbbut with a 35 times improvement

for POSIX and near 5 for MPI I/O. By choosing more specific quantum value for each accessed

file, it is possible to set up a desired quality of service for each parallel application running on the

cluster. In our case, the quantum variations are similar forthe two IOR benchmark.
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High concurrency

In this last part, the completion time of 10 distinct applications launched under a NFS server and

a NFS server plugged to aIOLi are discussed. 96 nodes were dedicated for this experiment. The

table 2 summarizes all values. The description of each application is given : 4 applications worked

on the file in a parallel way and 6 others in sequential. The whole size of data represents 6GBytes.

Completion time

Application description NFS NFS+aIOLi

POSIX MPI IO POSIX MPI IO

Read decomposition: 2GB over 32 nodes (granularity=128K) 490 840 134 500

Write Decomposition: 2GB over 32 nodes (granularity=128KB) 409 815 107 604

Read decomposition: 256MB over 16 nodes (granularity=8KB)595.5 728 104 415

Write decomposition: 128MB over 8nodes (granularity=64KB) 51 257 14.5 247

Sequential read: 32MB on 1 node (granularity=4KB) 531 9 48.5 3

Sequential write: 32MB from 1 node (granularity=4KB) 208 9 47 6

Sequential read: 4MB on 1 node (granularity=32KB) 57 1.5 6 1

Sequential write: 4MB from 1 node (granularity=32KB) 39 2 19 2

Sequential read: 1GB on 1 node (granularity=2MB) 558 59 143.5 54

Sequential write: 512MB from 1 node (granularity=2MB) 192 71 84 61.5

Table 2: Cluster workloads - completion time for NFS and NFS plugged to aIOLi

Values are given in second

On a traditional NFS server, the MPI I/O mechanisms exploited inside the parallel I/O inten-

sive applications favor the sequential program: the optimizations are done on the client side which

tends to reduce congestion issue on the NFS and thus enables to proceed the smaller tasks. Unfortu-

nately, these optimizations are not well suited for a multi-applicative environment and the overhead

generated by internal MPI I/O mechanisms becomes important. Regarding the NFS server plugged

to aIOLi, both POSIX and MPI I/O performances are significantly improved for all the applica-

tions. The executions of all applications requires less than 2 minutes and 23 seconds for aIOLi

whereas POSIX needs closed to 10 minutes and MPI I/O takes 14 minutes. Finally, once again,

22



the optimizations made by MPI I/O for parallel applicationsfavor on the one hand the sequential

programs but on the other hand add an useless overhead on parallel I/O intensive programs.

5 Future Work

During the performance evaluation of our extended NFS server, we found an unusual behavior due

to the file system protocol granularity and file system implementation. When several processes are

deployed on the same node, they they strive to access the NFS client layer which results in some

starvation problems between them. To solve this problem, weneed to force the file system client

part to proceed the request in the order we choose. This can bedone by issuing only one request

at a time. In that case, even if requests are divided into smaller ones, they still are issued in the

aggregation order.aIOLi already has the required internal structure to support thismechanism. We

just need to insert it into the Linux Virtual File System on the client side and to launch another

instance ofaIOLi on the server side to make it work. Moreover, we observed thatcongestion issue

on the server side is reduced by the MPI I/O optimizations made on the client side. An approach

made of two aIOLi modules may also moderate the load of the fileserver.

This kind of approach will end up in a multi-level scheduler.On the local node,aIOLi chooses

the best requests order according to the knowledge of all pending I/O operations generated by

local processes. On the server side,aIOLi schedules requests taking into account the global traffic

coming from all the nodes. Finally, an I/O scheduler in the Linux operating system chooses the

most suitable requests order according to the layout of dataon the physical storage medium. At the

end of the day, each I/O operation is handled by many consecutive schedulers working at different

levels and optimizing at different access granularity. We call this scheduling methodcascading

scheduling. A similar idea consists of exploiting themeta node concept used by several modern

file systems (GPFS, NFSV4, Lustre, etc.) to provide consistency on files. Each time a process

accesses a file for the first time, it becomes the meta node for this file and will be in charge of the

coherency for this file. Our proposal is to add theaIOLi scheduler at the same level. Thus, the

meta node will schedule I/O requests for this file. Thecascading scheduling is thus deployed and

well balanced on several nodes on the cluster which reduces congestion issues.
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6 Conclusion

In this article, we presentedaIOLi , a framework for high performance file access in distributed

multi-applications environments. We emphasized all the original characteristics that make the

strength ofaIOLi : it is transparent to the applications because it is set between them and the

underlying I/O subsystems, it maximizes the file system throughput by taking advantage of aggre-

gation opportunities despite the distributed context, it maintains fairness between applications by

using a quantum-based scheduling algorithm and it does not degrade interactive tasks behavior by

deriving the scheduling algorithm from the MLF algorithm.

We validatedaIOLi by conducting experiments: first on the widespread Bonnie++and b_eff_io

to observe overhead and scalability and second on IOR benchmarks andcat-like programs to eval-

uate efficiency. Results show that our approach dramatically improves performances when several

distributed applications make simultaneous access to distinct files. Furthermore, as expected, our

solution maintains fairness between applications and doesnot significantly degrade interactivity.

Future work will includecascading scheduling, the integration of specialized schedulers at

different levels in the I/O resolving process.

We plan to build a hierarchical scheduling infrastructure with aIOLi master nodes using a re-

mote server, typically a NFS one, integratingaIOLi too. Together with theaIOLi part on each

client, this would lead to a cascading scheduler that could balance congestion point in the architec-

ture to avoid bottlenecks no matter the granularity value.

We will also extendaIOLi to enable it efficient use with parallel file systems, by taking into

account the distributed data layout. We currently study howaIOLi could be connected to a parallel

version of NFS and to Lustre.
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