
Adaptive I/O Scheduling for Distributed Multi-applications Environments ∗

Adrien Lebre, Yves Denneulin, Guillaume Huard Przemyslaw Sowa
Laboratoire Informatique et Distribution - IMAG Instituteof Computer and Information Sciences

Montbonnot St Martin,France Czestochowa University pf Technology, Poland
firstname.lastname@imag.fr sowa@icis.pcz.pl

Abstract

The aIOLi project aims at optimizing the I/O accesses
within the cluster by providing a simple POSIX API, thus
avoiding the constraints to use a dedicated parallel I/O li-
brary.

This paper introduces an extension of aIOLi to address
the issue of disjoint accesses generated by different concur-
rent applications in a cluster. In such a context, perfor-
mance, fairness and response time are the criteria for which
good tradeoffs have to be assessed. A test composed of two
concurrent IOR benchmarks showed improvements on read
accesses by a factor ranging from 3.5 to 35 with POSIX
calls and from 3.3 to 5 with ROMIO.

1 Overview

I/O bottlenecks have always been a major issue in Com-
puter Science , it is likely to continue as I/O hardware per-
formance increases slower than the one of CPU and mem-
ory. Furthermore, this gap is amplified by the increasing use
of clusters of workstations or SMPs as well as the growing
number of scientific application developments with more
demanding I/O requirements using different access patterns.

However, contrary to “database accesses” which depend
on the selection criteria and are usually more sparse, sev-
eral studies [2, 5] have characterized parallel I/O accesses
and have observed recurrent determined patterns based on
stride parameters. For instance, in a parallel matrix product,
each process has to access specific parts of the matrices ac-
cording to the array-distributions used (BLOCK/BLOCK,
BLOCK/CYCLIC, etc.). Unfortunately, even if these pat-
terns are known, their interleaving dramatically increase
the response time and affect the overall performance of
the storage sub-system: remote file server receives sev-
eral read/write requests on different offsets and sizes at
the same time which potentially generate many disk head
movements, one of the most time consuming operations in
modern computers (approximately 9ms).

∗This work has been done within the ID laboratory jointly supported by
CNRS, INPG, INRIA, and UJF and the project LIPS between INRIAand
BULL Lab.

As a consequence, a lot of researchers have attempted to
develop new I/O sub-systems that take these parallel com-
puting accesses into account. Proposed solutions to reduce
congestion issues and improve I/O access performance can
be divided in two major categories:Parallel File systems
andParallel I/O Libraries. The former, [1, 6, 7], tries to find
the best tradeoff between distributed file system constraints
(coherency, fault tolerance, remote accesses, etc.) and ef-
ficient exploitation of hardware capabilities. Library solu-
tions are focused on parallel I/O aspects and portability con-
straints. ROMIO, an implementation of the MPI I/O stan-
dard, is the best known; it includes two main algorithms:
data sieving andtwo-phase [8].

Nevertheless, these systems often have too many fea-
tures, which complicates development and the maintainabil-
ity of scientific applications. Moreover, they require deep
knowledge of specific APIs and model subtleties in order
to reach good performance. These aspects have been em-
phasized in our previous work [3], in which we reported
several inefficiencies in the classical way to deal with re-
mote I/O accesses in a parallel HPC context and suggested
an approach to favor sequential access which is known as
always being more efficient [4].

In this paper, we focus on multiple concurrent parallel
I/O applications striving for access to the storage system.
Indeed, when programs exploit parallel I/O libraries to en-
hance performances, all provided optimizations deal with
their own requests only. Thus, collective operations, such
as two-phases, do not take I/O requirements from other
concurrent applications into account. This leads to perfor-
mance degradations due to conflicting individual I/O opti-
mizations. In such a context, the storage system, local or re-
mote, is the only one able to deal with requests in a global,
multi-applications, manner. Unfortunately, most of existing
storage systems do not provide appropriate I/O scheduling
strategies. A naive approach to proceed the batch of wait-
ing requests consists in dealing with them on a per program
basis. It provides a good throughput by starving the other
applications. Such a policy does not take into account the
response time and fairness criteria which are mandatory in
a multiple applications environment. We suggest to design
an infrastructure made of two major elements: a transpar-



ent parallel I/O aggregation mechanism and a scheduling
algorithm to deal with intensive I/O applications in a HPC
context. Our main contribution is to connect these two ele-
ments to make them work together to reach significant per-
formance improvements. They are integrated into a generic
framework pluggable into any I/O system. Unlike our for-
mer work, it only interacts with the I/O layers of distributed
file systems (on client or server or on both sides) and has no
direct interactions with the clients.

2 Experiments

We implemented our proposal as a Linux module and
evaluated it on a Network File System server. Even if NFS
is not really suited to high performance I/O, it remains the
standard configuration for small and medium sized clusters.

Our testing system is a part of the grid “grid5000”1 lo-
cated at the INRIA Sophia-Antipolis site. A dedicated NFS
server (version 3, TCP, 32Kb read size, cache disabled)
above an ext3 file system and several SMP nodes have been
exploited. We executed two instances of the IOR bench-
mark2 to evaluate real I/O intensive HPC applications, each
deployed on 16 nodes and retrieving a 4 GBytes file.

As expected, the execution of two I/O intensive appli-
cations impacts on performance (figure 1) butaIOLi min-
imizes this phenomenon. We can see that even if the col-
lective MPI I/O performances show a light improvement
for small granularities, they quickly reach the POSIX ones
for granularities greater than 128Kb. Moreover, even if the
MPI I/O collective approach is improved byaIOLi (MPI I/O
+ aIOLi curve), the standard API POSIX underaIOLi pro-
vides the best performance (sinceaIOLi doesn’t require any
synchronization mechanisms). For the smallest granularity,
Posix requires more than 1 hour and half, MPI IO more than
11 minutes whereasaIOLi only takes 2 minutes and half.

 0

 500

 1000

 1500

 2000

 2500

 3000

10245121286432168

Posix
Collective MPIIO

Collective MPIIO + aIOLi
aIOLi

C
om

pl
et

io
n 

T
im

e
(s

ec
on

de
s)

File access granularity
(KBytes)

Figure 1. 2 IOR - read evaluation
2*4GB file decomposition /2*32 MPI instances on2*16 nodes.

1http://www.grid5000.fr/ .
2Input/Output Stress benchmark from the LLNL,

Regarding the fairness (table 1), the 2 IOR benchmarks
have been launched at the same time: at worst, the gap be-
tween the two completion time is 8.5 seconds for 8Kb but
with a 35 times improvement for POSIX and near 5 for MPI
I/O. By choosing more specific scheduling params for each
application, it is possible to set up a particular quality of
service for each parallel applications running on the cluster.

File access granularity
8kB 32kB 128KB 512KB

Posix 0 6 0 0
MPI I/O 1 1 2.5 0
aIOLi 8.5 5 5 7
MPI I/O+aIOLi 1.5 1 4.5 2

Table 1. Read - completion time gap (in sec)

3 Conclusion
We introducedaIOLi, a framework for high performance

file access in distributed multi-applications environments.
Preliminary results show that our approach dramatically im-
proves read performances. Furthermore, as expected, our
solution maintains fairness between applications and does
not significantly degrade interactivity. We currently study
how aIOLi could be connected to a parallel file system as
Lustre.

Future work will includecascading scheduling, the in-
tegration of specialized schedulers at different levels inthe
I/O resolving process.

References

[1] P. H. Carns, W. B. Ligon III, R. B. Ross, and R. Thakur.
PVFS: A parallel file system for linux clusters.Proceedings
of the 4th Annual Linux Showcase and Conference, GA, Oc-
tober 2000.

[2] P. E. Crandall, R. A. Aydt, A. A. Chien, and D. A. Reed.
Input/output characteristics of scalable parallel applications.
Proceedings of Supercomputing ’95, CA, December 1995.

[3] A. Lebre and Y. Denneulin. aioli: An input/output library for
cluster of smp.Proceeding of the 5th International Sympo-
sium on Cluster Computing and Grid, UK, May 2005.

[4] M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S. Fabry. A
fast file system for UNIX.Computer Systems, 1984.

[5] N. Nieuwejaar, D. Kotz, A. Purakayastha, C. S. Ellis, and
M. Best. File-access characteristics of parallel scientific
workloads. IEEE Transactions on Parallel and Distributed
Systems, October 1996.

[6] R. L. F. B. Schmuck. Gpfs: A shared-disk file system for
large computing clusters.Proceedings of the 5th Conference
on File and Storage Technologies, January 2002.

[7] P. Schwan. Lustre : Building a file system for 1,000-node
clusters.Proceedings of the Linux Symposium, Ottawa, July
2003.

[8] R. Thakur, W. Gropp, and E. Lusk. Data sieving and collective
I/O in ROMIO. Proceedings of the Seventh Symposium on the
Frontiers of Massively Parallel Computation, February 1999.


