
IS
S

N
 0

24
9-

63
99

ap por t
de r ech er ch e

Thème NUM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Controlling and Scheduling Parallel I/O in
Multi-application Environments

Adrien Lebre — Yves Denneulin — Thanh Trung Van

N° 5689

Septembre 2005

Unité de recherche INRIA Rhône-Alpes
655, avenue de l’Europe, 38334 Montbonnot Saint Ismier (France)

Téléphone : +33 4 76 61 52 00 — Télécopie +33 4 76 61 52 52

Controlling and Sheduling Parallel I/O in Multi-appliationEnvironments∗Adrien Lebre , Yves Denneulin , Thanh Trung VanThème NUM � Systèmes numériquesProjet MESCALRapport de reherhe n° 5689 � Septembre 2005 � 19 pages
Abstrat: As lusters usage grows, a lot of sienti� appliations (biology, limatology, nulear physis . . .)have undergone rewrites to harness the extra CPU and extra storage provided. These demanding software, be-sides handling huge amounts of data with peuliar parallel I/O aess patterns, are run on lusters, environmentswhere onurreny between those appliations ours.Several propositions have been made to manage both the intensive parallel I/O appliations and the lusteronstraints. Nevertheless, available Parallel File Systems or Parallel I/O Libraries are based on spei� API's,whih limit portability and require good knowledge of their internal mehanisms to get good performanes.Moreover, Parallel I/O Libraries are usually foused on running only one appliation without taking intoaount the load that the other ones generate on the luster. This paper presents a new strategy to handleparallel I/O in a multi-appliation and distributed environment. Our framework detets parallel I/O aesseswithout inter-proesses synhronization mehanisms and uses a simple interfae based on the lassi UNIXsystem alls (reat/open/read/write/lose). In addition, we analyze two sheduling strategies to improveglobal performanes and provide fairness between appliations. Early experiments have given promising resultsand have shown that using suh approahes may lead to better performanes as well as improvements of qualityof servie.Key-words: aIOLi, Parallel I/O, luster, SMP, HPC, File Systems

∗ This work is done in the ontext of the joint researh projet MESCAL supported by CNRS, INPG, INRIA, and UJF andthe projet LIPS between INRIA and BULL Lab. Computer resoures are provided by the g5k luster (further information athttp://www.grid5000.fr/).

Régulation et Ordonnanement des Entrées/Sorties Disques dans lesEnvironnements Multi-Appliatifs †Résumé : Un grand nombre d'appliations sienti�ques (biologie, limatologie, . . .) utilise et génère desquantités de données qui ne essent de roître en plus de modes d'aès parallèles qui leur est partiulier. Auxproblématiques �out-of-ore� ou �parallel I/O� longuement abordées dans un ontexte d'aès loal et mono-appliatif, viennent s'ajouter les onsidérations et les ontraintes imposées par un environnement distribué etmulti-appliatif, omme l'est une grappe. Plusieurs approhes ont été proposées par la ommunauté sienti�quedans le but d'améliorer les performanes lors d'aès parallèles à des �hiers distants (systèmes de �hiers ouenore bibliothèques d'entrées/sorties spéialisées). Toutefois, es solutions intègrent des API plus ou moinslourdes mais surtout spéi�ques qui néessitent une onnaissane exate de haque subtilité interne au modèle.De plus, es solutions proposent des méanismes permettant d'améliorer les performanes au sein d'une mêmeet unique appliation sans tenir ompte de la harge induite par les appliations onurrentes.Ce rapport présente une solution globale pour l'aès aux données au sein d'une grappe. Notre approhe permetde déouvrir les aès parallèles émanant des appliations a�n de les réguler et limiter ainsi les phénomènesde type "goulet d'étrangelement" dans un premier temps. À partie de nos préédents travaux, ette solu-tion ne néessite pas d'API spéi�que et est totalement transparente pour les utilisateurs. Deux stratégiesd'ordonannement ont été inluses au sein de notre prototype a�n d'optimiser les performanes tout en tenantompte du ritère d'équité entre les appliations. Les performanes obtenues ave e prototype sont promet-teuses et ont révélé qu'une telle approhe peut améliorer nettement les performanes globales tout en proposantune qualité de servie paramétrable.Mots-lés : aIOLi, Entrées/Sorties Parallèles, HPC, grappe, SMP, système de �hiers

Controlling and Sheduling Parallel I/O in Multi-appliation Environments 3Contents1 Introdution 32 Former aIOLi prototype 43 aIOLi at luster level 44 Tehnial issues 54.1 Synhronization of I/O requests . 54.2 Physial aggregation vs. virtual aggregation . 65 Sheduling of I/O requests on a luster 75.1 Algorithm Weighted Shortest Job First . 75.2 A variant of algorithm Multilevel Feedbak . 95.3 Parallel �le system onstraint . 96 Experiments 116.1 Prototype implementation . 116.2 Experimentations . 126.3 Multi-node oordination . 126.3.1 Detetion of parallel aess shema . 126.3.2 Results . 126.3.3 Observed problems . 146.4 Multi-appliation oordination . 146.5 To the Multi-appliation environments . 177 Related works 178 Conlusion 181 IntrodutionI/O bottleneks have always been a major issue in Computer Siene [2℄, and it is likely to ontinue as I/Ohardware performanes inrease slower than the ones of CPU and memory, [7℄. Furthermore, this gap isampli�ed by the inreasing use of lusters of workstations or SMPs as well as the number of sienti� appliationdevelopments (moleular biology, limatology, nulear physis . . .) with ever more demanding I/O requirementsand di�erent patterns of aess (for instane, in a parallel matrix produt, eah proess has to aess spei�parts aording to the array-distributions used). As a onsequene, lots of researhers have attempted todevelop new I/O sub-systems that take into aount both hardware aspets and parallel omputing aesses.The proposed systems often have too many features, whih ompliates developments and the maintainabilitypart of sienti� appliations. Moreover, they require deep knowledge of their spei� API and model subtletiesin order to ahieve performanes.These aspets have been emphasized in our previous work1 [11℄, we reported several ine�ient points in thelassial way to treat remote I/O aesses in a SMP ontext:Sending of I/O requests in parallel :Several requests of various appliations are sent in parallel to the same I/O server. This kind of I/Obehavior drastially impats performanes and generates ongestion beause of a bad sheduling poliyon the remote storage server.Lak of transparent aggregation mehanisms :Common POSIX I/O requests suh as read() or write() are usually sent to I/O server without hekingif they an be aggregated. Thus potential bene�ts for larger aesses are lost. The time to feth data anbe strongly dereased if the lient I/O stak provides suh a mehanism.1aIOLi library for parallel I/ORR n° 5689

4 Adrien Lebre , Yves Denneulin , Thanh Trung VanAll those fats led to the development of the �rst version of the aIOLi prototype: an e�ient and transparentI/O library for parallel aess to remote storage from one SMP node (intra-node, setion 2).In this seond work, an approah to distribute the former onepts to luster level (inter-node) is introdued.It onsists in designing a system of oordination (or regulation) between I/O requests of various proesses(dependent or not) in order to synhronize their requests and to aggregate them if possible. The remainingparts of the paper falls into the following parts: setion 2 reviews suintly the onepts of the aIOLi solutionwithin one SMP node and its limitations. Setion 3 gives an overview of our system and its main objetives.Then, setion 4 deals with some tehnial issues. Setion 5 fouses on two sheduling poliies : a variant ofWSJF2 and an MLF3 based approah whih have been inluded in our framework to improve e�ieny withoutdereasing fairness between appliations. Setion 6 gives some early results. Some related works are disussedin setion 7. Eventually, setion 8 onludes and desribes further extensions and improvements.2 Former aIOLi prototypeThe aIOLi system was born from the need to have powerful mehanisms for data aess within a luster withouthaving to use a omplex and tedious API. Relying on the ubiquitous interfae of the standard C library, the�rst implementation of the aIOLi prototype [11℄ provides an e�ient management of parallel I/O within a SMPnode : I/O requests sending gets some synhronization so that they may be sent in a sequential manner to avoidthe parallel sending to a same I/O node whih an be suboptimal. The temporary storage of requests withina entralized point let the aesses be analyzed in order to �nd aggregation possibilities and to apply variousoptimization tehniques. It is omposed of two omponents: a lient module, linked to the appliation, overloadsthe standard alls (open/lose/read/write/lseek) in order to rediret them towards a server module (theaIOLi daemon) in harge of handling these aesses. Eah time a proess generates a request, the lient modulewill send this request to the daemon where it will be kept in a queue before being transmitted to the dataserver. The daemon is a multi-threaded proess: a �rst thread reeives the requests from the lients and storesthem in the orresponding queues. Many I/O threads analyze these queues, aggregate the ontiguous requestsbefore exeuting real system alls.One of the strong points of this library is its ease of usage; it does not require the users to learn the APIof a new library, whih ould be omplex. It only overloads the standard C interfae, whih lets the approahbeing used for all the POSIX arhitetures that is nearly all modern arhitetures.Experiments arried out with this prototype gave promising results ompared to the performanes providedby POSIX interfaes or even ROMIO, the most deployed MPI I/O implementation. Currently, we are developinga Linux Kernel Module to provide aIOLi mehanisms in a full transparent way. A more detailed analysis ofthe �rst prototype as well as the evaluations are available on the site http://aioli.imag.fr/. As written inthe introdution, this seond paper deals with the distribution of these onepts to luster level and will bedesribed in the following setions.3 aIOLi at luster levelFrom the interesting results of the �rst version of aIOLi, we deided to study the implementation of a similarapproah but at luster level. The priniples of this seond version are losed to the �rst one but now we have tomanage the I/O requests oming from many nodes. The lak of a global memory and a global lok makes themanagement more di�ult. Moreover, we want to provide a framework handling the I/O requests at 3 distintlevels:1. Intra-node oordination: Management (synhronization and aggregation) of I/O requests within one nodeto treat the I/O aesses of one appliation. For example, in a matrix produt, eah element of the matrixis omputed by one SPMD instane4. This module is already provided by the �rst version of aIOLi.2. Multi-node oordination: Management (synhronization, aggregation and sheduling) of I/O requestsbelonging to the same appliation deployed on many SMPs nodes on a luster. For example, in a matrixprodut, eah node is in harge of a part of the omputation. This part is distributed between di�erentproessors of the onerned node. In this ase, it is important to synhronize the requests oming from2Weighted Shortest Job First3MultiLevel Feedbak4Single Program Multiple Data INRIA

Controlling and Sheduling Parallel I/O in Multi-appliation Environments 5di�erent nodes in order to use in an e�ient manner the storage system. The basi idea onsists inproviding some mehanisms suh as olletive I/O but still in a transparent way.3. Multi-appliation oordination: ombination of (1) and (2) when taking are of onurrent exeution ofmany appliations. In this mode, several appliations an send their requests at the same time. Forexample, two appliations run in onurrene in one luster, the �rst one doing matrix omputation whilethe seond one is proessing FFT5. We want to inlude some sheduling poliies to provide e�ieny aswell as fairness.To provide suh features, we have to solve several onstraints :Synhronize the I/O requests oming from several nodes to avoid ine�ient parallel aesses to the same I/Onode. This �rst di�ulty ould be treated as a distributed mutual exlusion problem (setion 4.1).Aggregate ontiguous requests to bring e�ieny and to favor large aess. As a physial aggregation requiresomplex and expensive mehanisms to be implemented in a distributed environment, we hoose to exploita derived approah that we alled �virtual aggregation� (setion 4.2).Shedule I/O requests to obtain a good ratio of fairness/performane between di�erent appliations in theluster and between di�erent proesses of one appliation (in ase of SPMD appliation). The interativityparameter should also take into aount even if we are in HPC6 ontext. Users monitoring tools shouldnot starve due to onurrent intensive I/O appliations (setion 5).The two following setions will desribe more learly these problems.4 Tehnial issuesThis setion presents tehnial aspets related to the prototype and the proposed solutions. The synhronizationof I/O requests and aggregation mehanisms are disussed. Due to the importane of the suggested strategies,we hoose to deal with sheduling poliies in a subsequent setion.4.1 Synhronization of I/O requestsAs we mentioned during the previous setion, sending many requests to the same I/O server in parallel anlower the overall performane of the system. One of the major purpose of this version of the aIOLi solution isto synhronize the I/O requests oming from several nodes in luster. Ideally, there should be only one requestat server side at eah moment. In our ontext, the problem of I/O requests synhronization is similar to thedistributed mutual exlusion problem. There were many researhes done about this problem [24, 17℄. In ourase, the most important riteria are:Number of message used in eah synhronization round,The synhronization delay, whih is the time between the exeution of two requests.The simple solution for this synhronization problem onsist in using a �master server� in harge of ontrollingthe I/O requests. At eah time a lient, to aess the storage server, will send a demand message to the masterserver 7 (1). The master server keeps this message in a waiting queue and informs the lient when the resoureis freed (2), then the lient an begin to aess to storage server. When the lient ompletes its request, it willinform the master server (3) then the master server an grant this resoure to another lient.There are several drawbaks to this approah: �rst, it is not fault tolerant8 ; seond, the master server anbe overloaded by several requests from several lients. The last but not the least onerns the synhronizationdelay whih is always 2T (T is the required time to send one message on the network). This parameter ispreponderant in our ase : on the one hand, 2T ould be non-negligible aording to the required time toproess a small request and on the other hand, the number of request ould be quikly very large (whih ouldgenerate an important overost : n ∗ 2T).5Fast Fourier Transform6High Performane Computing7In our ase, the aIOLi server.8Single Point Of FailureRR n° 5689

6 Adrien Lebre , Yves Denneulin , Thanh Trung Van

R
eq

ue
st

 (
1)

Client site

O
K

 (
2)

Control site

C
om

pl
et

io
n

(3
)

Figure 1: Simple synhronization mehanismA lient sends a request to aess to the resoure (1) ; the server informs the lient when the ressoure is available (2) ;after ompletion the lient noti�es the server (3).Based on the predition of the exeution time, we implemented an enhaned approah of this algorithmto redue the synhronization delay: eah time the master server reeives a demand message, it will omputethe related approximated exeution time and will use this value to notify just in time the next demand. Theexeution time of one request is estimated by the following formula:
execution_time =

request_size

disk_bandwidth
(1)The �ompletion request� is then exploit to �x the potential degradation in the predition (adjust the urrentbandwith, . . .). Unfortunately, the suess of this method is dependent on the network harateristis and theauray of the predition of exeution time aording to the server load. In the optimum ase, the real timeis equal to predited time, �gure 2 (a). However, if the real time is lesser than predited time, the disk is notused, e�iently, �gure 2 (b) ; �nally in the last ase if the real time is greater than the predited time, theseond lient will begin its transfer whereas the �rst site is arrying out its request, �gure 2 (b). To minimizease () whih ould quikly lead to bad performane, we add a onstant k to the former formula. This valueshould be set between 0 and 2T aording to the hardware arhiteture.

req. 1 req. 2

req. 1 req. 2

req. 2req. 1

t

t real < t predicted
Inefficient utilisation of I/O server

(b)

t(a)

Optimal case

t real = t predicted

t real > t predicted

t(c)

Conflict accessFigure 2: Predition approah asesFrom a theoretial point of view, the purpose of a mehanism of synhronization based on the predition is to redue thesynhronous delay (optimal ase). Unfortunately, the auray of the predition depends on hardware harateristis.The �rst experiments dislosed the di�ulty to make aurate predition as well as �nd the right value forthe onstant k (setion 6.3.3).4.2 Physial aggregation vs. virtual aggregationIn the �rst version of aIOLi, a physial aggregation mehanism has been implemented: small ontiguous requestsare merged in one larger request that is sent to the remote �le system. For example, the data return by a read()all were retrieved in an internal bu�er before to be redistribute to �nal user bu�ers. Sine we were within anode (one operating system), oherene mehanisms was provide by the under �le system stak (single bu�erahe). In a distributed environment, the implementation of suh mehanism beomes more di�ult. Whilesimple shared-memory segments used to be enough to aggregate and redistribute data, dediated omplexINRIA

Controlling and Sheduling Parallel I/O in Multi-appliation Environments 7protools are now mandatory to o�er the same oherene warranties (data repliation, ahe invalidation, . . .).So we deided to implement a variant that we all �virtual aggregation�. The idea of this method is to �ndthe ontiguous requests and set an exeution order as if all requests would form one larger : For example, thethree following requests read(30,40), read(20,30), read(10,20)9, requests will be reordered and exeuted in theorder: read(10,20), read(20,30), read(30,40). In this way, disjoint aesses beome ontiguous. This �virtualaggregation� an exploit ahe mehanism like read ahead (from lient and server sides) and improve the globalperformane. We ould take into aount the stripe riterion in ase of parallel �le systems (setion 5.3).5 Sheduling of I/O requests on a lusterSheduling I/O is somewhat similar to the problem of proess sheduling in an operating system. In ourontext, if several proesses (or appliations) want to aess disk resoure whih is normally limited in a luster,we have to propose a poliy to share this resoure between them in a reasonable manner. The following exampleillustrates the neessity of suh a poliy : Suppose that we have 3 I/O requests (numbered 1, 2, 3 respetively)being sent from 3 di�erent appliations to the same I/O server. The amounts of aessed data are 10, 1, 5 KB,respetively. Suppose that these requests are exeuted aording to the FIFO10 order and the exeution timeof a request mathes its data size. The exeution time of the �rst request is 10 time units. The exeution timeof the seond request is only 1 unit but it has to wait 10 units from the �rst request : so the response time ofthe seond request is 10 + 1 = 11 units. Similarly, the response time of the third request is 10 + 1 + 5 = 16units. The total response time of the three requests is 10 + 11 + 16 = 37 units.Now we onsider another senario, the requests are exeuted in the �Shortest Job First� (SJF) order. Thatmeans the smallest request will be exeuted �rst. In this ase, the exeution order of the requests is 2, 3, 1. Theresponse time of the �rst request is 1 unit, the response time of the seond request is 1 + 5 = 6 units and theresponse time of the third request is 1 + 5 + 10 = 16 units. Thus, the total response time of the three requestsis only 1 + 6 + 16 = 23 units!In fat, eah sheduling strategy is optimal for a partiular purpose. The FIFO strategy in our exampleis good to minimize the maximal response time while the SJF strategy an minimize the total response time.The riteria in our model are omplex. We try to maximize the overall performane by aggregating as manyrequests as possible but we have to assure a minimal fairness between appliations and avoid the starvationproblem11. The I/O requests sheduling in our ontext is online non-lairvoyant problem : the jobs (requests)arrive in time and their size are unknown in advane due to the aggregation proess [3℄. So we propose twosheduling algorithms whih are desribed below.5.1 Algorithm Weighted Shortest Job FirstFrom the above example, we an see that the algorithm SJF is e�ient to minimize the total response time.However, this is a lairvoyant algorithm and it an ause the starvation problem with big requests. So wepropose to apply a variant of this algorithm that we all �Weighted Shortest Job First�. This algorithm anexploit the advantages of the SJF algorithm and avoid the starvation problem. The idea ame from the paper[22℄. In this algorithm, a virtual measurement of request size is used instead of its real size. Suppose that theexeution time of one request is Tr, the waiting time of this request sine its arrival is E and M is a onstantnumber; the virtual exeution time of this request an be alulated by:
Tv = Tr ∗

M − E

M
(2)Eah time the sheduler have to hoose a request, it will selet the one with the smallest virtual size. Beausethe virtual size of a request will lower with time, the starvation problem is avoided. However, in our model,the size of one request is not �xed in advane: it an merge with other requests and beomes bigger by virtualaggregation. In addition, the number and the arrival time of these requests are not known in advane, too. Sowe have modi�ed the above formula like this:

Tv =

i=n∑

i=1

Tvi (3)9read(x,y): read from o�set x to o�set y in the same �le10First In First Out, also known under First Come First Served algorithm11An appliation has to wait inde�nitely for the resoureRR n° 5689

8 Adrien Lebre , Yves Denneulin , Thanh Trung VanIn this formula, n is the number of requests in the �aggregated request�, Tvi is the virtual exeution time ofthe ith request that is alulated by the formula 2.There is one more problem with this algorithm. In fat, if the size of an �aggregated request� is not limited, itan grow with time and the starvation problem still remains if other appliations generate many small requestsin parallel. To takle this problem, we hoose to limit the real size of an �aggregated request� by a threshold.If the aggregation proess �nds a request that has a size greater than this threshold, it will �break� this requestinto two small requests: the size of the �rst one is M and size of the seond one is Tr − M .The algorithm WSJF is illustrated in the following example (�gure 3)At the �rst step, there are 4 requests from appliation A1, 3 requests from appliation A2. Suppose that theexeution time of eah request is 5 and M is 30. After the �rst aggregation proess, the formula 3 givesus the virtual sizes of �aggregated requests� of A1 (=20) and A2 (=15). So the �aggregated request� ofA2 is exeuted �rst.At the seond step, when the �aggregated request� of A2 has just �nished, 1 new request of A1 and 4 requestsof A3 ome to the aIOLi server. These requests are reordered by the aggregation proess. The waitingtime of the 4 �rst A1 is 15 units (this is the exeution time of the �aggregated request� A2 seleted inthe �rst step) and the waiting time of the new request A1 is 0; so the virtual size of �aggregated request�A1 is 4 ∗ 5 ∗ (30 − 15)/30 + 5 ∗ (30 − 0)/30 = 15 units while the virtual size of �aggregated request� A3is 4 ∗ 5 = 20. So the �aggregated request� A1 is seleted beause its virtual size is smaller even if its realsize is bigger than the real size of the the �aggregated request� A3.At the third step, while the �aggregated request� A1 is being exeuted, other requests A3 ome to the aIOLiserver. In this ase, the aggregation proess returns two �aggregated requests� beause if there is only onerequest then the size of this request will be greater than M .

A2A2 A2

A2 A2 A2 A1 A1

A1 A1A3 A3 A3

A1 A1 A1A1 A3 A3

A3

A3

A1 A1 A1 A1 A1

A3 A3 A3 A3 A3 A3

A3 A3 A3 A3 A3

A1 A3

A3 A3 A3 A3 A3 A3

A3

A3A3

A3

A1A1

A1A1 A1

A3A3A3 A3

A3

A3

T vir = 15 T vir = 20

Tr = M, T vir =13,33

A3

Processing WaitingStep 2

A1 A1 A1 A1 A1

Step 3

A1 A2 A1 A2 A1 A2 A1

Step 1

Pre−processing (offset dependance)

A2A1A1A1A1 A2

T vir = 20 T vir = 15

A2

Scheduling

Scheduling

Processing Waiting

Pre−processing (offset dependance)

Scheduling

Pre−processing (offset dependance)

Processing Waiting

Tr = T vir = 10

Figure 3: Algorithm WSJF INRIA

Controlling and Sheduling Parallel I/O in Multi-appliation Environments 95.2 A variant of algorithm Multilevel FeedbakThe seond algorithm that we want to try to apply in our model is a variant of algorithm Multilevel Feedbak(MLF), [16℄, one of the algorithms for proess sheduling in the Unix operating system. This variant is desribedas follows:Eah time the sheduler want to selet a request to exeute, it will propose a time quantum for eah requestin the waiting list. If the exeution time of a request is lesser or equal to this time quantum, this requestan be seleted.If there are several requests satisfying the seletion ondition (exeution time is greater or equal to the proposedtime quantum), the FIFO riterion will be applied between these requests.The proposed time quantum is not idential for every request. The �new� requests will reeive smaller quantathan �old� requests. If a request is not seleted after a seletion time, it will be proposed a greater quantumin the next time (k time greater than the last time). This approah an avoid the starvation problembeause the proposed quantum for one request an grow by the multipliation fator with the waitingtime.The �gure 4 illustrates this algorithm:At the �rst step, there are 4 requests of appliation A1, 3 requests of appliation A2 and 1 request of appliationA3. Suppose that the exeution time of eah request is 5 and the original quantum proposed is 10. Atthe �rst time, the requests are aggregated in the pre-proessing phase, then a time quantum is proposedfor eah request. Beause this is the �rst time these requests are in the waiting queue, the proposed timequanta are 10 for every request. The exeution times of �aggregated requests� A1 and A2 are 20 and 15,greater than the proposed quanta so they are not seleted. The exeution time of request A3 is 5, thisrequest satis�es the seletion ondition so it is seleted in this round.At the seond step, when the request A3 is being exeuted, others requests A2 and A3 ome to aIOLi server. Therequests A2 are aggregated in the pre-proessing phase. Beause this is the seond time the �aggregatedrequests� A1 and A2 are in the waiting queue, they are proposed a greater quantum. In this example wehoose the multipliation fator k = 2, so the proposed quanta for these two requests are 10 ∗ 2 = 20. Therequest A3 is proposed an original quantum (10) beause this is the �rst time this request is in the queue.The size of requests A1, A2, A3 are 20, 25, 5 respetively while their quanta are 20, 20, 10. The requestsA1 and A3 satisfy the seletion ondition, so the riterion FIFO is applied to hoose a request to proess.In this ase the �aggregated request� A1 is seleted.Similarly, while the request A1 is being exeuted, others requests A2 and A3 ome to aIOLi server. After thepre-proessing phase, the size of �aggregated requests� A2 and A3 are 30 and 20. Beause this is the thirdtime the request A2 is in the queue the proposed quantum for this request is 20 ∗ 2 = 40 and the proposedquantum for the request A3 is 10 ∗ 2 = 20. The two requests A2 and A3 satisfy the seletion ondition,so the �aggregated request� A2 is seleted aording to the FIFO order.5.3 Parallel �le system onstraintIn this setion, we disuss the onstraint related to the parallel �le systems. In these systems, the data are oftendistributed on several storage nodes12 (data striping) . Sine data of a request an be distributed on severalnodes, we must onsider the relation between these sub-requests of the same appliation. For example, assumethat we have two requests R1 (of appliation A1) and R2 (of appliation A2) of size of 15 and 10 KB and two I/Onodes having the �stripe size� of 5 KB. Then R1 is devised in 3 sub-requests and R2 is devised in 2 sub-requests(the size of eah sub-request is 5 KB). Assume that we use strategy WSJF without heking the onstraintsbetween sub-requests of the same appliation and the exeution time of eah sub-request orresponds to its size,i.e. 5 time units for example. Then, as shown in the �gure 5, the exeution time of R1 is 15 units and R2 is 10units; thus the total response time of the two requests is 25 units. By taking into aount of data distribution,if sub-requests of A2 on both I/O is arried out before sub-requests of A1, the exeution time of R2 is of 5 unitsand R1 of 15; in this ase the total response time is 20 units.12This distribution redues ongestion problems sine aesses are balaned over I/O nodes.RR n° 5689

10 Adrien Lebre , Yves Denneulin , Thanh Trung Van

q = 20, T = 20 q = 20, T = 25 q = 10, T = 5

A1 A1 A1 A1 A2 A2 A2 A2 A3A2

A1 A1 A1 A1

Pre−processing (offset dependance)

A3 A2A1

A2

A2 A2 A2 A3A2

A2 A2 A2 A2 A3

A2 A2 A2

q = 10, T = 20

A1A1 A1 A2 A2

A2 A2 A2 A2 A3

A2 A2 A3 A3

A2 A2 A3A3A3

q = 40, T = 30 q = 20, T = 20

A2 A2 A2 A3 A3

A1A1

A1 A2 A1 A2 A1 A3A1 A2

A1 A1 A1A1

A1A1 A2 A2 A2 A3

q = 10, T = 15 q = 10, T = 5

A3

A3A3

Processing WaitingStep 1

A3

Processing WaitingStep 2

Step 2

Scheduling

Pre−processing (offset dependance)

Scheduling

Pre−processing (offset dependance)

Processing Waiting

Scheduling

A1 A1 A1 A1 A2 A2 A2A2 A3A2

Figure 4: Variant MLF

A2 A1 A1

A1 A1A2

I/O
Node 1

I/O
Node 1

Node 1
I/O

Node 1
I/O

I/O
Node 2

I/O
Node 2

I/O
Node 2

A1A2

T vir = 10

A1

T vir = 15

T vir = 5 T vir = 10

A1 A2

A1A2

T vir = 10 T vir = 15

A2A1

A2A1

T vir = 5 T vir = 5

I/O
Node 2

A2A1 A1

Processing Waiting

Pre−processing (offset dependance)

Scheduling (WSJF) Scheduling (WSJF)

Scheduling (SOJF) Scheduling (SOJF)

Figure 5: Constraint between sub-requests
INRIA

Controlling and Sheduling Parallel I/O in Multi-appliation Environments 11The above example shows the importane of onstraint between sub-requests in the parallel �le systems.A simple idea is to synhronize sub-requests of the same appliation so that they are arried out at the sametime. A possible solution is to apply a ommon seletion riterion for all sub-requests belonging to the sameappliation. For example, we an apply strategy WSJF in a independent way to eah I/O queue while takinginto aount the total size of the request for the seletion riterion (instead of the size of sub-requests). Thismethod is similar to the approah �Shortest Outstanding I/O Demand Job First� or SOJF, [4℄. In this examplethe request R2 has the smallest size between the two requests; approah SOJF selets sub-requests of A2 (totalsize is 10) and then sub-requests of A1 (total size is 15) whih ould be better. However this method, like methodSJF, an involve starvation problems with the requests having big total size. So we an use the weighting methodexploited in algorithm WSJF to treat this problem. Atually, we have not integrated this last aspet into ourprototype, this work is an additional prospet for this work and will require a more thorough study.6 ExperimentsBased on the priniples disussed in the previous setions, we built a seond prototype of the aIOLi solution.Developed in C, this seond implementation has to be linked to the appliation and ould be used in oordinationof the former version.6.1 Prototype implementationThe system is based on a traditional lient-server model, �gure 6: a lient module that overloads the POSIXalls is linked to eah appliation and a server daemon is deployed at a aIOLi server to entralize and regulatethe I/O requests of lient. With regards to the size of the luster, the aIOLi server ould be deployed on the�le server node as well as a distint node. The lient requests are transmitted by a tp hannel to the aIOLiserver. Eah request is kept in a orresponding queue aording to the onerned �le, aess o�set, requestsize and arrival time on the server side. A �timer13� based approah enables to notify lients in time when thepredition mode is enabled. The sheduling poliy as well as the predition mode are set at the launh time.
I/O Node

(e.g. NFS server)

Network

....
aIOLi client

Process 1

aIOLi client

Process n

Node SMP

....
aIOLi client

Process 1

aIOLi client

Process n

Node SMP

aIOLi "master"I/O Node
(e.g. NFS server)

....
aIOLi client

Process 1

aIOLi client

Process n

Node SMP

....
aIOLi client

Process 1

aIOLi client

Process n

Node SMP

Network

aIOLi "master"

(b) : Deployement on larger cluster

An hierarchycal approach could

also be applied

Dedicated Node

(a) : Suggested deployement on
small cluster

Figure 6: Coneivable system arhitetures13POSIX SIGALRM signal.
RR n° 5689

12 Adrien Lebre , Yves Denneulin , Thanh Trung Van6.2 ExperimentationsThe testing system is a sub part of the grid �grid5000�14 loated at INRIA south site (Sophia-Antipolis -FRANCE). Eah node (a IBM eServer 325) is omposed by two AMD opteron (2GHz), 2GB RAM and a 80GBIDE hard-drive (bandwidth estimated to 57MB/s by hdparm ommand). The luster is interonneted by agiga-ethernet network. The operating system Debian Linux was used. A dediated NFS server (version 3, TCP,32Kb read size) and several SMP nodes have been exploited.The benhmarks orrespond to the ases mentioned in setion 3 : multi-node oordination (one appliationdistributes on several nodes) and multi-appliation oordination (onurreny between many appliations dis-tribute on several nodes). In the �rst experiment, setion 6.3, one MPI appliation (8 instanes) deomposes a2GB remote �le stored on the NFS server. It enables to evaluate the performane of our solution in preseneof parallel aesses (automati disovering of parallel patterns). The seond benhmark, setion 6.4 onernstwo MPI appliations deployed on two distint nodes (eah omposed of 4 instanes) : they deompose onur-rently two di�erent �les (2*2GB) stored on the NFS server. Thanks to this test, we analyzed how our solutionhandles the onurreny between two parallel I/O appliations and how its impats on the fairness riterion(i.e. di�erene of ompletion times). The last experiment, setion 6.5 onsists in observing the behavior ofsuh a approah in a �real� ase : 5 distint MPI appliations deompose 5 �les in a onurrent manner. Toavoid the ahe in�uene, eah experiment uses a di�erent �le at eah exeution. Every deomposition havebeen exeuted with di�erent �le aess granularity to analyze the in�uene related to the number of messagestransmitted to the aIOLi server. In addition, we launhed eah benhmark on both arhitetures (�gure 6) :NFS and aIOLi solution on the same and then on distint nodes.6.3 Multi-node oordination6.3.1 Detetion of parallel aess shemaIn the preliminary tests, we quikly observed that the use of the algorithms WSJF or MLF were not suitedto maximize �virtual aggregation� within one appliation whih led to bad performane. We slight modi�edthese algorithms in order to obtain more virtual aggregations. The following example illustrates this idea:suppose that we have four requests of the same size that need to be sent to the same data server (read(10,20),read(20,30), read(30,40), read(40,50) on the same �le 15). Suppose that requests read(10,20) andread(30,40) ome to the aIOLi server at the same time while the requests read(20,30) and read(40,50)ome to aIOLi server later. These requests are disjoint, so they an not be aggregated. At the next step, theseletion riterion of the two algorithms are applied to selet a request to be exeuted. Beause the requestsread(10,20) and read(30,40) have the same size and the same arrival time they have the same priority.However, if the request read(30,40) is seleted and exeuted before the request read(10,20); in the next stepwhen the requests read(20,30) and read(40,50) ome to the aIOLi server, the waiting queue will ontaindisjoint requests: read(10,20), read(20,30) and read(40,50). On the other hand, if the request having thesmallest o�set, read(10,20) is seleted, the waiting queue will ontain the requests read(20,30), read(30,40)and read(40,50) that an be aggregated in one request. From these observations, the �rst idea is to seletthe request having the smallest o�set among the available requests while keeping the prinipal goal of eahalgorithm. In the algorithm WSJF, we have introdued a juntion oe�ient: between two requests, a requestwill be seleted if its o�set is smaller than the seond request's o�set and its virtual size is not greater thana determined ratio of the seond request. We set this ratio to 10%. In the algorithm MLF, the FIFO riteriabetween two requests are replaed by the o�set riterion if they onern the same �le (the smallest o�set ispreeminent).6.3.2 ResultsThe �gure 7 (a) and 7 (b) illustrate the required time to make the deomposition over 8 MPI instanes. The�Posix� urve orresponds to the lassial read() all, the �Two Phases� to the olletive I/O mehanism provideby ROMIO [25℄. The 4 last urves show the results aording to the related sheduling poliy ; predition modeis disabled and enabled (XXXX-TIME).From a global point of view, we ould see that the aIOLi server doesn't really impat on NFS performanein this �rst ase. The urves WSJF, WSJF-TIME, MLF and MLF-TIME have the same form on both graphs.However we ould note a slightly overhead for smallest granularity due to the importane of network messages.14http://www.grid5000.fr/ .15read(x,y) : read from o�set x to o�set y in the �le. INRIA

Controlling and Sheduling Parallel I/O in Multi-appliation Environments 13So let's fous on the graph 7 (a) : for the mode without predition, no pro�t is brought by the two algorithmsfor the aesses less than 32 Kb. Indeed for small aesses (less than 32 Kb), eah request between 1Kb and32Kb generates a NFS read request of 32 Kb. So many requests an be diretly satis�ed by the lient ahe.In the aIOLi approah, every request (regardless of granularity aess) are sent to the aIOLi server where theyare synhronized and maybe aggregated. Thus, for eah request an overhead of T is added (setion 4.1). Forexample, with a 2GB �le deomposition at 8 Kb granularity, the number of neessary requests are 256000. Inour network, the synhronization delay is about 100µs, so 27 seonds are neessary to realize the synhronizationproess.In addition, we an observe that the juntion oe�ient used in WSJF is not initialized with a su�ientvalue. The requests are poorly reordered (bad detetion of parallel aess shema), the lient does not bene�tfrom the ahe and on the ontrary generates a multitude of disjoined aesses. The MLF approah pro�tsquite well from the ahe e�et so it generates a small overhead ompared to the standard approah.

 0

 100

 200

 300

 400

 500

40961024512128643216841

C
om

pl
et

io
n

T
im

e
(s

ec
)

File access granularity
(KBytes)

Posix
Two Phases

WSJF
WSJF-TIME

MLF
MLF-TIME

(a) aIOLi server on NFS

 0

 100

 200

 300

 400

 500

40961024512128643216841

C
om

pl
et

io
n

T
im

e
(s

ec
)

File access granularity
(KBytes)

Posix
Two Phases

WSJF
WSJF-TIME

MLF
MLF-TIME

(b) aIOLi server on a dediated nodeFigure 7: 2GB �le deomposition by one appliation8 MPI instanes deompose a �le stored on a dediated NFS server. The �Two Phases� orresponds to the olletiveI/O operations supplied by ROMIO.Throughout the experiment, the algorithm MLF behaves better beause it always hooses the request havingsmallest o�set whih maximizes �virtual aggregation� latter. From 32 Kb, the aIOLi approah beomes powerfulfor the two algorithms ; the POSIX requests an not be satis�ed by the lient ahe and as onsequenegenerate on�its at the �le server side whih have to manage them in parallel. For larger granularity, therequired requests number for the deomposition beomes less (for 4MB only 512), and the synhronizationtime beomes transparent. Finally, without exploiting tedious routines like �Two Phase approah�required(MPI_File_Set_View(), MPI_File_Read_All(), ...), we reah similar performane (even better for �leaess between 16KB to 1MB) with the MLF approah.RR n° 5689

14 Adrien Lebre , Yves Denneulin , Thanh Trung Van6.3.3 Observed problemsRegarding the performane reahed in our former implementation [11℄, we traed our appliation to analyze andunderstand why we ould not provide better gains. We disovered two ine�ient behaviors that we desribe inthe following part.Shift phenomenonIn spite of the hanges desribed in setion 6.3.1, we ontinued to observe a problem that we all �shiftphenomenon�: the order and the periodiity of the arrival of requests oming from the various proesses aredependent on a greater number of fators than in the preeding version, [11℄. Indeed, there is a strong dependenebetween the performanes and the sheduling poliy of the proesses established by the Linux system within asame node. A re�etion window used in the antiipatory sheduling approah had been integrated to partly solvethe problem. In our ase, this dependene is ampli�ed by the number of nodes taking part in the deompositionsine the sheduling strategy of eah node is independent. Moreover, we have to take into aount the networkfators. Thus a proess an deliver a new request as soon as its last request was treated whereas another hasa muh longer re-emission period. The �gure 8 illustrates this phenomenon: four proesses take part in thedeomposition of the same �le. At step 1, the request of proess P0 arrives late ompared to the other requests(P1, P2, P3). The requests of P1, P2, P3 are ontiguous and are aggregated in the same �virtual� request. Whenthe P0 request arrives to the aIOLi server, the aeptane message for the request P1 was already delivered,so it annot be aggregated in this �virtual� request and is inserted in the queue. It is exeuted at step 2 afterthe treatment of the whole previous aggregated request. When the request of P0 is being exeuted, the newrequests of P1, P2 and P3 arrive and are aggregated in step 3. The senario is repeated in the next steps.Requests oming from P0 an never be aggregated with requests P1, P2, P3. This problem an degrade 20% ofoverall performane of the system.Predition problemThe launhing of new tests enabled us to detet an additional problem related to the predition method:when a predition is erroneous, it will in�uene the following preditions. If the duration of a request is givenin a false way, the aeptane message of the following request will be erroneous and the new request will begintoo early (on�it of aesses, �gure 2 ()). There will be a onsiderable performane redution sine the twoaesses will be treated in parallel. In a similar way, the seond predition will be also false, followed by theperformane redution and will generate a new derive on the following one and so on. The di�erene betweenpredited and real time will grow with time. We have slightly improved our system in order to take into aountthis problem with eah new predition. However, with the aesses of small size, we have not yet been able toreah an exat predition. A similar problem was presented in [23℄.6.4 Multi-appliation oordinationThis experiment is done to evaluate our approah with the exeution of many parallel appliations in a luster.The appliation in the previous test is re-exeuted on two distint nodes (4*2 instanes MPI). Eah appliationrealizes a deomposition on a 2GB �le stored on a remote NFS server. The results are presented in the �gures9 (a) and 9 (b). Like the previous experiment, the aIOLi server doesn't impat on the NFS server.The approah without predition generates an important overhead for low granularity due to the number ofsynhronization messages (2*2GB to deompose by blok of 8K) and the synhronization delay implied betweentwo demands.In addition, we an notie that even in the MLF with time predition, the performanes are worse than theones given by the Posix approah. The MLF poliy implies lot of swithes between the requests from the �rst
P1 P2 P3 P0 P1 P2 P3 P0

Rd(0,10) Rd(50, 60; 60,70; 70,80)Rd(10,20; 20,30; 30,40) Rd(40,50)

.....

Step 1 Step 2 Step 3 Step 4

Figure 8: Shift requestArrival order of messages has an in�uene on the aggregation proess. In this example, requests of P0 an never beaggregated. INRIA

Controlling and Sheduling Parallel I/O in Multi-appliation Environments 15appliation and the seond one. These �I/O swithes� do not bene�t of ahe mehanism. For larger aesses,we an observe a slight fall of the performanes that will be on�rmed in the next experiment (setion 6.5). Itwould be interesting to look further into this behavior and to analyze if the degradation of the preditions isstronger for large aesses and/or in multi-appliation mode. It is in partiular the same for the WSJF approah.From a global point of view, the olletive I/O approah provided by ROMIO gives the best performane inthis ase. Atually, The �Two Phase� approah sends only for 4MB requests (ROMIO internal size bu�er). Inaddition, sine two appliations are exeuted, the NFS server has to proess only two requests at eah time.

 0

 100

 200

 300

 400

 500

40961024512128643216841

C
om

pl
et

io
n

T
im

e
(s

ec
)

File access granularity
(KBytes)

Posix
Two Phases

WSJF
WSJF-TIME

MLF
MLF-TIME

(a) aIOLi server on NFS

 0

 100

 200

 300

 400

 500

40961024512128643216841

C
om

pl
et

io
n

T
im

e
(s

ec
)

File access granularity
(KBytes)

Posix
Two Phases

WSJF
WSJF-TIME

MLF
MLF-TIME

(b) aIOLi server on a dediated nodeFigure 9: 2*2GB �le deompositionsTwo appliation (4*2 MPI instanes) deompose two �les stored on a dediated NFS server. The two appliations areindependent and work on various �les.One of the goals of this experiment is to evaluate the performane brought by our approah16 but also tostudy the fairness riterion between the appliations. The importane of �nding an aeptable tradeo� betweene�ieny (maximization of the bandwidth) and fairness riterion. The �gure 10 illustrates this parameter :the di�erene between ompletion times of eah appliation is measured. The interest of suh a riterion is toobserve if between two appliations requiring the same amount of data, one is not starved by the other one.The standard POSIX approah provide signi�ant di�erene between the ompletion time of both applia-tions for small aesses : eah request is treated in a ompletely independent manner and is distributed on the2*2GB data (ertain requests are favored in omparison with others). The WSJF approah seems to be a�etedby the shift phenomenon and gives results whih require furthermore analysis. Finally, the MLF algorithm withpredited time provides a very good ratio fairness/performane for aess larger than 32KB. For instane, ataess granularity of 4 MB, the di�erene of ompletion time between the two appliations is only about 10seonds for a pro�t lose to 50% (in omparison with the Posix approah).16Parallel aess disovery in multi-appliation mode.RR n° 5689

16 Adrien Lebre , Yves Denneulin , Thanh Trung Van

 0

 10

 20

 30

 40

 50

 60

40961024512128643216841

C
om

pl
et

io
n

T
im

e
D

iff
er

en
ce

(s
ec

)

File access granularity
(KBytes)

Posix
Two Phases

WSJF
WSJF-TIME

MLF
MLF-TIME

(a) aIOLi server on NFS

 0

 10

 20

 30

 40

 50

 60

40961024512128643216841

C
om

pl
et

io
n

T
im

e
(s

ec
)

File access granularity
(KBytes)

Posix
Two Phases

WSJF
WSJF-TIME

MLF
MLF-TIME

(b) aIOLi server on a dediated nodeFigure 10: 2*2GB �le deompositions - FairnessFairness riterion, variation between ompletion times is aeptable for the algorithm MLF ompared to its pro�t.(f. �gure9).

INRIA

Controlling and Sheduling Parallel I/O in Multi-appliation Environments 176.5 To the Multi-appliation environmentsThis experiment is done to evaluate our approah in a �real� ase : various independent appliations are exeutedaording to the luster bath sheduler without regarding if they ould be onurrent on the �le server. Morepreisely, 5 MPI appliations are exeuted : the �rst one is omposed of 6 MPI instanes distributed on 3 nodeswhih deompose 1.5GB �le, the seond one is relied on 4 MPI instanes distributed on two nodes to deompose1GB, the third one, the fourth and the last one are based on 2 MPI instanes all distributed on one node andmake respetively 0.8GB, 500MB and 200MB �le deomposition. The results are presented in �gure 11. Thebenhmark has been exeuted for Posix, �Two Phases�, MLF and MLF with predited time mode. We an seethat the results are quite promising. The MLF approah gives the best performane (even better than the MPII/O approah). The fairness quality is urrently being evaluated and should be available in the �nal version ofthe paper. We want to analyze the provided time by our sheduling strategies to the appliations aording totheir required �le size.

 0

 100

 200

 300

 400

 500

 600

 700

 800

40961024512128643216841

C
om

pl
et

io
n

T
im

e
(s

ec
)

File access granularity
(KBytes)

Posix
Two Phases

MLF
MLF-TIME

Figure 11: 4GB - 5 �le deompositionsMany independent MPI instanes deompose several �les stored on a dediated NFS server. The total size of dataretrieved from the NFS server is 4GB. aIOLi server is deployed on a dediated node.7 Related worksA lot of works have been arried out on the parallel I/O. The presented arhiteture is similar to the libraryPANDA, [21℄, (using of master servers in harge of I/O request management) but it is only spei� for input andoutput of multidimentional arrays. [5℄ suggests a new approah to handle non ontiguous aess from individuallient. This tehnique, alled �list I/O� uses ideas lose to the stream-based I/O developed in PVFS or to thelio_listio all (de�ned in the POSIX standard): a list of tuples o�set/length represents several non ontiguousI/O requests. NFS V4, [1℄, introdues a similar tehnique alled �COMPOUND proedures� to redue the RPCoperations. Besides, many parallel �le systems [12, 13, 19, 6, 14, 15, 20℄, were developed in order to supportthe onurrent aesses from many lients. These �le systems distribute data on many disks and are usuallyintegrated di�erent aggregation tehniques to ameliorate the transfer time. They are e�ient but usually requirespei� APIs whih, as we mentioned above, imply deep knowledge of their internal mehanisms.There were many researhes about I/O sheduling but none �tted our need. For example, [22, 9℄ presentsmany disk sheduling algorithms. In [18℄, the author presents an approah alled �reative sheduling� allowingto ombine di�erent sheduling algorithms within a single system for a orret optimization for a given systemworkload. [10℄ proposes many heuristi algorithms for parallel I/O sheduling but they use a entralized bath-oriented sheduling model requiring a large amount of ontrol information whih is not always available for manysystems. In [8℄, the authors propose a non-entralized sheduling poliy applied for their Cluster�le system, butthis poliy is based on some spei� assumptions so it is not portable.
RR n° 5689

18 Adrien Lebre , Yves Denneulin , Thanh Trung Van8 ConlusionThis paper has presented the aIOLi system to optimize I/O requests within a luster. Priniples, onstraintsas well as seleted solutions (with their drawbaks) have been shown. Yet, our approah has the asset to betransparent for the users as it uses the ubiquitous C API (open/read/write/lose). The experimental resultshave on�rmed the bene�ts of suh an approah (mainly the MLF strategy, whih in the multi-appliationenvironments,is better than ROMIO and POSIX at all granularities).Main di�ulties onsist in the synhronization of I/O requests on the �le server and in establishing themulti-riterion sheduling algorithms (performane and fairness). The preditive approah, whih, in theory,should redue the synhronization delays, beomes quite omplex in pratie. The di�ulty of establishing apredition reliable enough with the aesses of small size is the main limitation. Likewise, further investigationshave to be arried out to understand the slight degradation for larger requests. However, we hope to reduepartly this problem by using an improved predition model whih is similar to the model used in the NetworkWeather Servies [26℄ tool to inrease the reliability of the preditions.The detetion of aess patterns implemented in the �rst version of aIOLi system beomes more and moreomplex. Lots of fators, suh as proess sheduling poliy, the network lateny, the network load may alter thereeption order of I/O requests. Using simple juntion oe�ient in the WSJF algorithm seems not to be enoughand requires a more detailed analysis. At the ontrary, the MLF approah has shown that with the aessesbigger than 32K, the ratio fairness/performane is quite promising. We plan to study the onstraints impliedby a real aggregation model to assess the tradeo� between potential bene�ts and the osts of the mehanisms(distributed ahe).The evaluation against the fairness riterion for the latest experiments is urrently in progress. Meanwhile,work on a �ner-grain sheduler is arried out to provide an extra-e�ieny when traditional I/O programs (suhas unix at ommand) are launhed. In suh a ase, inreasing the wait delay may indeed lead to getting themaximum from the read-ahead mehanisms before swithing to another I/O queue.Last but not least, the point onsisting in inluding to the sheduling algorithms the parallel �le systemonstraints (the urrent algorithms are applied for entralized data servers suh as NFS) has to be takled. Thisstrategy might also be improved by giving spei� hints from the bath sheduler to the aIOLi system in orderto provide for instane, di�erent levels of quality of servie (best e�ort, minimal bandwidth...).Referenes[1℄ Network �le system (nfs) version 4 protool, 2003.[2℄ G.M. Amdahl. Validity of the single-proessor approah to ahieving large sale omputing apabilities.pages 483�485, 1967.[3℄ Nikhil Bansal. Algorithms for Flow Time Sheduling. PhD thesis, Dept. of Computer Siene, CarnegieMellon University, 2003.[4℄ F. Chen and S. Majumdar. Performane of parallel i/o sheduling strategies on a network of workstations.Eighth International Conferene on Parallel and Distributed Systems, 2001.[5℄ A. Ching, A. Choudhary, K. Coloma, Wei keng Liao (Northwestern University), R. Ross, and W. Gropp(Argonne National Laboratory). Nonontiguous i/o aesses through mpi-io. May 2003.[6℄ Peter F. Corbett and Dror G. Feitelson. The Vesta parallel �le system. In Hai Jin, Toni Cortes, andRajkumar Buyya, editors, High Performane Mass Storage and Parallel I/O: Tehnologies and Appliations,hapter 20, pages 285�308. IEEE Computer Soiety Press and Wiley, New York, NY, 2001.[7℄ J. L. Hennessy and D. A. Patterson. Computer arhiteture: A quantitative approah, 1996.[8℄ Florin Isaila, Guido Malpohl, Vlad Olaru, Gabor Szeder, and Walter Tihy. Integrating olletive i/o andooperative ahing into the "luster�le" parallel �le system. In ICS '04: Proeedings of the 18th annualinternational onferene on Superomputing, pages 58�67, New York, NY, USA, 2004. ACM Press.[9℄ S. Iyer and P. Drushel. Antiipatory sheduling: A disk sheduling framework to overome deeptiveidleness in synhronous i/o. Appear in the 18th ACM Symposium on Operating Systems Priniples, 2001.INRIA

Controlling and Sheduling Parallel I/O in Multi-appliation Environments 19[10℄ Ravi Jain, Kiran Somalwar, John Werth, and J. C. Browne. Heuristis for sheduling I/O operations. IEEETransations on Parallel and Distributed Systems, 8(3):310�320, Marh 1997.[11℄ A. Lebre and Y. Denneulin. aioli: An input/output library for luster of smp. Deembre 2004.[12℄ W. B. Ligon and R. B. Ross. Implementation and performane of a parallel �le system for high performanedistributed appliations. In Proeedings of the Fifth IEEE International Symposium on High PerformaneDistributed Computing, pages 471�480. IEEE Computer Soiety Press, August 1996.[13℄ Pierre Lombard and Yves Denneulin. nfsp : A distributed nfs server for luster of workstations. InProeeding of the 16th international Parallel and Distributed Proessing Symposium, April 2002.[14℄ Steven A. Moyer and V. S. Sunderam. PIOUS: a salable parallel I/O system for distributed omputingenvironments. In Proeedings of the Salable High-Performane Computing Conferene, pages 71�78, 1994.[15℄ Nils Nieuwejaar and David Kotz. The Galley parallel �le system. Parallel Computing, 23(4):447�476, June1997.[16℄ K. Pruhs, J. Sgall, and E. Torng. Online sheduling. In Hanbook of Sheduling, hapter 15. CRC Press,2004.[17℄ M. Raynal. A tree-based algorithm for distributed mutual exlusion. ACM Trans. on Computer Systems(TOCS), 1989.[18℄ Robert B. Ross. Reative Sheduling For Parallel I/O Systems. PhD thesis, Clemson University, 2000.[19℄ Roger L.Haskin Frank B. Shmuk. Gpfs: A shared-disk �le system for large omputing lusters. InProeedings of the 5th Conferene on File and Storage Tehnologies, January 2002.[20℄ Phil Shwan. Lustre : Building a �le system for 1,000-node lusters. In Proeedings of the Linux Symposium,Ottawa, July 2003.[21℄ K. E. Seamons, Y. Chen, P. Jones, J. Jozwiak, and M. Winslett. Server-direted olletive I/O in Panda.In Proeedings of Superomputing '95, San Diego, CA, Deember 1995. IEEE Computer Soiety Press.[22℄ M. Seltzer, P. Chen, and J. Ousterhout. Disk sheduling revisited. In Proeedings of USENIX, pages313�323, 1990.[23℄ Manish Sharma and John W. Byers. How well does �le size predit wide-area transfer time? In Proeedingsof the 2002 Globeom Global Internet Symposium, Taipei, Taiwan, Otober 2002.[24℄ M. Singhal and N. G. Shivaratri. Advaned onepts in operating systems. MGraw-Hill, 1994.[25℄ Rajeev Thakur, William Gropp, and Ewing Lusk. Optimizing nonontiguous aesses in MPI-IO. ParallelComputing, 28(1):83�105, January 2002.[26℄ R. Wolski. Dynamially foreasting network performane using the network weather servie. appeared inCluster Computing: Networks, Software Tools, and Appliations, Jan. 1998.

RR n° 5689

Unité de recherche INRIA Rhône-Alpes
655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier (France)

Unité de recherche INRIA Futurs : Parc Club Orsay Université- ZAC des Vignes
4, rue Jacques Monod - 91893 ORSAY Cedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rocquencourt : Domaine de Voluceau- Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)http://www.inria.fr

ISSN 0249-6399

