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Abstra
t: As 
lusters usage grows, a lot of s
ienti�
 appli
ations (biology, 
limatology, nu
lear physi
s . . . )have undergone rewrites to harness the extra CPU and extra storage provided. These demanding software, be-sides handling huge amounts of data with pe
uliar parallel I/O a

ess patterns, are run on 
lusters, environmentswhere 
on
urren
y between those appli
ations o

urs.Several propositions have been made to manage both the intensive parallel I/O appli
ations and the 
luster
onstraints. Nevertheless, available Parallel File Systems or Parallel I/O Libraries are based on spe
i�
 API's,whi
h limit portability and require good knowledge of their internal me
hanisms to get good performan
es.Moreover, Parallel I/O Libraries are usually fo
used on running only one appli
ation without taking intoa

ount the load that the other ones generate on the 
luster. This paper presents a new strategy to handleparallel I/O in a multi-appli
ation and distributed environment. Our framework dete
ts parallel I/O a

esseswithout inter-pro
esses syn
hronization me
hanisms and uses a simple interfa
e based on the 
lassi
 UNIXsystem 
alls (
reat/open/read/write/
lose). In addition, we analyze two s
heduling strategies to improveglobal performan
es and provide fairness between appli
ations. Early experiments have given promising resultsand have shown that using su
h approa
hes may lead to better performan
es as well as improvements of qualityof servi
e.Key-words: aIOLi, Parallel I/O, 
luster, SMP, HPC, File Systems

∗ This work is done in the 
ontext of the joint resear
h proje
t MESCAL supported by CNRS, INPG, INRIA, and UJF andthe proje
t LIPS between INRIA and BULL Lab. Computer resour
es are provided by the g5k 
luster (further information athttp://www.grid5000.fr/).



Régulation et Ordonnan
ement des Entrées/Sorties Disques dans lesEnvironnements Multi-Appli
atifs †Résumé : Un grand nombre d'appli
ations s
ienti�ques (biologie, 
limatologie, . . . ) utilise et génère desquantités de données qui ne 
essent de 
roître en plus de modes d'a

ès parallèles qui leur est parti
ulier. Auxproblématiques �out-of-
ore� ou �parallel I/O� longuement abordées dans un 
ontexte d'a

ès lo
al et mono-appli
atif, viennent s'ajouter les 
onsidérations et les 
ontraintes imposées par un environnement distribué etmulti-appli
atif, 
omme l'est une grappe. Plusieurs appro
hes ont été proposées par la 
ommunauté s
ienti�quedans le but d'améliorer les performan
es lors d'a

ès parallèles à des �
hiers distants (systèmes de �
hiers ouen
ore bibliothèques d'entrées/sorties spé
ialisées). Toutefois, 
es solutions intègrent des API plus ou moinslourdes mais surtout spé
i�ques qui né
essitent une 
onnaissan
e exa
te de 
haque subtilité interne au modèle.De plus, 
es solutions proposent des mé
anismes permettant d'améliorer les performan
es au sein d'une mêmeet unique appli
ation sans tenir 
ompte de la 
harge induite par les appli
ations 
on
urrentes.Ce rapport présente une solution globale pour l'a

ès aux données au sein d'une grappe. Notre appro
he permetde dé
ouvrir les a

ès parallèles émanant des appli
ations a�n de les réguler et limiter ainsi les phénomènesde type "goulet d'étrangelement" dans un premier temps. À partie de nos pré
édents travaux, 
ette solu-tion ne né
essite pas d'API spé
i�que et est totalement transparente pour les utilisateurs. Deux stratégiesd'ordonann
ement ont été in
luses au sein de notre prototype a�n d'optimiser les performan
es tout en tenant
ompte du 
ritère d'équité entre les appli
ations. Les performan
es obtenues ave
 
e prototype sont promet-teuses et ont révélé qu'une telle appro
he peut améliorer nettement les performan
es globales tout en proposantune qualité de servi
e paramétrable.Mots-
lés : aIOLi, Entrées/Sorties Parallèles, HPC, grappe, SMP, système de �
hiers
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tionI/O bottlene
ks have always been a major issue in Computer S
ien
e [2℄, and it is likely to 
ontinue as I/Ohardware performan
es in
rease slower than the ones of CPU and memory, [7℄. Furthermore, this gap isampli�ed by the in
reasing use of 
lusters of workstations or SMPs as well as the number of s
ienti�
 appli
ationdevelopments (mole
ular biology, 
limatology, nu
lear physi
s . . . ) with ever more demanding I/O requirementsand di�erent patterns of a

ess (for instan
e, in a parallel matrix produ
t, ea
h pro
ess has to a

ess spe
i�
parts a

ording to the array-distributions used). As a 
onsequen
e, lots of resear
hers have attempted todevelop new I/O sub-systems that take into a

ount both hardware aspe
ts and parallel 
omputing a

esses.The proposed systems often have too many features, whi
h 
ompli
ates developments and the maintainabilitypart of s
ienti�
 appli
ations. Moreover, they require deep knowledge of their spe
i�
 API and model subtletiesin order to a
hieve performan
es.These aspe
ts have been emphasized in our previous work1 [11℄, we reported several ine�
ient points in the
lassi
al way to treat remote I/O a

esses in a SMP 
ontext:Sending of I/O requests in parallel :Several requests of various appli
ations are sent in parallel to the same I/O server. This kind of I/Obehavior drasti
ally impa
ts performan
es and generates 
ongestion be
ause of a bad s
heduling poli
yon the remote storage server.La
k of transparent aggregation me
hanisms :Common POSIX I/O requests su
h as read() or write() are usually sent to I/O server without 
he
kingif they 
an be aggregated. Thus potential bene�ts for larger a

esses are lost. The time to fet
h data 
anbe strongly de
reased if the 
lient I/O sta
k provides su
h a me
hanism.1aIOLi library for parallel I/ORR n° 5689



4 Adrien Lebre , Yves Denneulin , Thanh Trung VanAll those fa
ts led to the development of the �rst version of the aIOLi prototype: an e�
ient and transparentI/O library for parallel a

ess to remote storage from one SMP node (intra-node, se
tion 2).In this se
ond work, an approa
h to distribute the former 
on
epts to 
luster level (inter-node) is introdu
ed.It 
onsists in designing a system of 
oordination (or regulation) between I/O requests of various pro
esses(dependent or not) in order to syn
hronize their requests and to aggregate them if possible. The remainingparts of the paper falls into the following parts: se
tion 2 reviews su

in
tly the 
on
epts of the aIOLi solutionwithin one SMP node and its limitations. Se
tion 3 gives an overview of our system and its main obje
tives.Then, se
tion 4 deals with some te
hni
al issues. Se
tion 5 fo
uses on two s
heduling poli
ies : a variant ofWSJF2 and an MLF3 based approa
h whi
h have been in
luded in our framework to improve e�
ien
y withoutde
reasing fairness between appli
ations. Se
tion 6 gives some early results. Some related works are dis
ussedin se
tion 7. Eventually, se
tion 8 
on
ludes and des
ribes further extensions and improvements.2 Former aIOLi prototypeThe aIOLi system was born from the need to have powerful me
hanisms for data a

ess within a 
luster withouthaving to use a 
omplex and tedious API. Relying on the ubiquitous interfa
e of the standard C library, the�rst implementation of the aIOLi prototype [11℄ provides an e�
ient management of parallel I/O within a SMPnode : I/O requests sending gets some syn
hronization so that they may be sent in a sequential manner to avoidthe parallel sending to a same I/O node whi
h 
an be suboptimal. The temporary storage of requests withina 
entralized point let the a

esses be analyzed in order to �nd aggregation possibilities and to apply variousoptimization te
hniques. It is 
omposed of two 
omponents: a 
lient module, linked to the appli
ation, overloadsthe standard 
alls (open/
lose/read/write/lseek) in order to redire
t them towards a server module (theaIOLi daemon) in 
harge of handling these a

esses. Ea
h time a pro
ess generates a request, the 
lient modulewill send this request to the daemon where it will be kept in a queue before being transmitted to the dataserver. The daemon is a multi-threaded pro
ess: a �rst thread re
eives the requests from the 
lients and storesthem in the 
orresponding queues. Many I/O threads analyze these queues, aggregate the 
ontiguous requestsbefore exe
uting real system 
alls.One of the strong points of this library is its ease of usage; it does not require the users to learn the APIof a new library, whi
h 
ould be 
omplex. It only overloads the standard C interfa
e, whi
h lets the approa
hbeing used for all the POSIX ar
hite
tures that is nearly all modern ar
hite
tures.Experiments 
arried out with this prototype gave promising results 
ompared to the performan
es providedby POSIX interfa
es or even ROMIO, the most deployed MPI I/O implementation. Currently, we are developinga Linux Kernel Module to provide aIOLi me
hanisms in a full transparent way. A more detailed analysis ofthe �rst prototype as well as the evaluations are available on the site http://aioli.imag.fr/. As written inthe introdu
tion, this se
ond paper deals with the distribution of these 
on
epts to 
luster level and will bedes
ribed in the following se
tions.3 aIOLi at 
luster levelFrom the interesting results of the �rst version of aIOLi, we de
ided to study the implementation of a similarapproa
h but at 
luster level. The prin
iples of this se
ond version are 
losed to the �rst one but now we have tomanage the I/O requests 
oming from many nodes. The la
k of a global memory and a global 
lo
k makes themanagement more di�
ult. Moreover, we want to provide a framework handling the I/O requests at 3 distin
tlevels:1. Intra-node 
oordination: Management (syn
hronization and aggregation) of I/O requests within one nodeto treat the I/O a

esses of one appli
ation. For example, in a matrix produ
t, ea
h element of the matrixis 
omputed by one SPMD instan
e4. This module is already provided by the �rst version of aIOLi.2. Multi-node 
oordination: Management (syn
hronization, aggregation and s
heduling) of I/O requestsbelonging to the same appli
ation deployed on many SMPs nodes on a 
luster. For example, in a matrixprodu
t, ea
h node is in 
harge of a part of the 
omputation. This part is distributed between di�erentpro
essors of the 
on
erned node. In this 
ase, it is important to syn
hronize the requests 
oming from2Weighted Shortest Job First3MultiLevel Feedba
k4Single Program Multiple Data INRIA
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heduling Parallel I/O in Multi-appli
ation Environments 5di�erent nodes in order to use in an e�
ient manner the storage system. The basi
 idea 
onsists inproviding some me
hanisms su
h as 
olle
tive I/O but still in a transparent way.3. Multi-appli
ation 
oordination: 
ombination of (1) and (2) when taking 
are of 
on
urrent exe
ution ofmany appli
ations. In this mode, several appli
ations 
an send their requests at the same time. Forexample, two appli
ations run in 
on
urren
e in one 
luster, the �rst one doing matrix 
omputation whilethe se
ond one is pro
essing FFT5. We want to in
lude some s
heduling poli
ies to provide e�
ien
y aswell as fairness.To provide su
h features, we have to solve several 
onstraints :Syn
hronize the I/O requests 
oming from several nodes to avoid ine�
ient parallel a

esses to the same I/Onode. This �rst di�
ulty 
ould be treated as a distributed mutual ex
lusion problem (se
tion 4.1).Aggregate 
ontiguous requests to bring e�
ien
y and to favor large a

ess. As a physi
al aggregation requires
omplex and expensive me
hanisms to be implemented in a distributed environment, we 
hoose to exploita derived approa
h that we 
alled �virtual aggregation� (se
tion 4.2).S
hedule I/O requests to obtain a good ratio of fairness/performan
e between di�erent appli
ations in the
luster and between di�erent pro
esses of one appli
ation (in 
ase of SPMD appli
ation). The intera
tivityparameter should also take into a

ount even if we are in HPC6 
ontext. Users monitoring tools shouldnot starve due to 
on
urrent intensive I/O appli
ations (se
tion 5).The two following se
tions will des
ribe more 
learly these problems.4 Te
hni
al issuesThis se
tion presents te
hni
al aspe
ts related to the prototype and the proposed solutions. The syn
hronizationof I/O requests and aggregation me
hanisms are dis
ussed. Due to the importan
e of the suggested strategies,we 
hoose to deal with s
heduling poli
ies in a subsequent se
tion.4.1 Syn
hronization of I/O requestsAs we mentioned during the previous se
tion, sending many requests to the same I/O server in parallel 
anlower the overall performan
e of the system. One of the major purpose of this version of the aIOLi solution isto syn
hronize the I/O requests 
oming from several nodes in 
luster. Ideally, there should be only one requestat server side at ea
h moment. In our 
ontext, the problem of I/O requests syn
hronization is similar to thedistributed mutual ex
lusion problem. There were many resear
hes done about this problem [24, 17℄. In our
ase, the most important 
riteria are:Number of message used in ea
h syn
hronization round,The syn
hronization delay, whi
h is the time between the exe
ution of two requests.The simple solution for this syn
hronization problem 
onsist in using a �master server� in 
harge of 
ontrollingthe I/O requests. At ea
h time a 
lient, to a

ess the storage server, will send a demand message to the masterserver 7 (1). The master server keeps this message in a waiting queue and informs the 
lient when the resour
eis freed (2), then the 
lient 
an begin to a

ess to storage server. When the 
lient 
ompletes its request, it willinform the master server (3) then the master server 
an grant this resour
e to another 
lient.There are several drawba
ks to this approa
h: �rst, it is not fault tolerant8 ; se
ond, the master server 
anbe overloaded by several requests from several 
lients. The last but not the least 
on
erns the syn
hronizationdelay whi
h is always 2T (T is the required time to send one message on the network). This parameter ispreponderant in our 
ase : on the one hand, 2T 
ould be non-negligible a

ording to the required time topro
ess a small request and on the other hand, the number of request 
ould be qui
kly very large (whi
h 
ouldgenerate an important over
ost : n ∗ 2T ).5Fast Fourier Transform6High Performan
e Computing7In our 
ase, the aIOLi server.8Single Point Of FailureRR n° 5689
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Figure 1: Simple syn
hronization me
hanismA 
lient sends a request to a

ess to the resour
e (1) ; the server informs the 
lient when the ressour
e is available (2) ;after 
ompletion the 
lient noti�es the server (3).Based on the predi
tion of the exe
ution time, we implemented an enhan
ed approa
h of this algorithmto redu
e the syn
hronization delay: ea
h time the master server re
eives a demand message, it will 
omputethe related approximated exe
ution time and will use this value to notify just in time the next demand. Theexe
ution time of one request is estimated by the following formula:
execution_time =

request_size

disk_bandwidth
(1)The �
ompletion request� is then exploit to �x the potential degradation in the predi
tion (adjust the 
urrentbandwith, . . . ). Unfortunately, the su

ess of this method is dependent on the network 
hara
teristi
s and thea

ura
y of the predi
tion of exe
ution time a

ording to the server load. In the optimum 
ase, the real timeis equal to predi
ted time, �gure 2 (a). However, if the real time is lesser than predi
ted time, the disk is notused, e�
iently, �gure 2 (b) ; �nally in the last 
ase if the real time is greater than the predi
ted time, these
ond 
lient will begin its transfer whereas the �rst site is 
arrying out its request, �gure 2 (b). To minimize
ase (
) whi
h 
ould qui
kly lead to bad performan
e, we add a 
onstant k to the former formula. This valueshould be set between 0 and 2T a

ording to the hardware ar
hite
ture.

req. 1 req. 2

req. 1 req. 2

req. 2req. 1

t

t real < t predicted
Inefficient utilisation of I/O server

(b)

t(a)

    
Optimal case

t real = t predicted

t real > t predicted

t(c)

Conflict accessFigure 2: Predi
tion approa
h 
asesFrom a theoreti
al point of view, the purpose of a me
hanism of syn
hronization based on the predi
tion is to redu
e thesyn
hronous delay (optimal 
ase). Unfortunately, the a

ura
y of the predi
tion depends on hardware 
hara
teristi
s.The �rst experiments dis
losed the di�
ulty to make a

urate predi
tion as well as �nd the right value forthe 
onstant k (se
tion 6.3.3).4.2 Physi
al aggregation vs. virtual aggregationIn the �rst version of aIOLi, a physi
al aggregation me
hanism has been implemented: small 
ontiguous requestsare merged in one larger request that is sent to the remote �le system. For example, the data return by a read()
all were retrieved in an internal bu�er before to be redistribute to �nal user bu�ers. Sin
e we were within anode (one operating system), 
oheren
e me
hanisms was provide by the under �le system sta
k (single bu�er
a
he). In a distributed environment, the implementation of su
h me
hanism be
omes more di�
ult. Whilesimple shared-memory segments used to be enough to aggregate and redistribute data, dedi
ated 
omplexINRIA
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ation Environments 7proto
ols are now mandatory to o�er the same 
oheren
e warranties (data repli
ation, 
a
he invalidation, . . . ).So we de
ided to implement a variant that we 
all �virtual aggregation�. The idea of this method is to �ndthe 
ontiguous requests and set an exe
ution order as if all requests would form one larger : For example, thethree following requests read(30,40), read(20,30), read(10,20)9, requests will be reordered and exe
uted in theorder: read(10,20), read(20,30), read(30,40). In this way, disjoint a

esses be
ome 
ontiguous. This �virtualaggregation� 
an exploit 
a
he me
hanism like read ahead (from 
lient and server sides) and improve the globalperforman
e. We 
ould take into a

ount the stripe 
riterion in 
ase of parallel �le systems (se
tion 5.3).5 S
heduling of I/O requests on a 
lusterS
heduling I/O is somewhat similar to the problem of pro
ess s
heduling in an operating system. In our
ontext, if several pro
esses (or appli
ations) want to a

ess disk resour
e whi
h is normally limited in a 
luster,we have to propose a poli
y to share this resour
e between them in a reasonable manner. The following exampleillustrates the ne
essity of su
h a poli
y : Suppose that we have 3 I/O requests (numbered 1, 2, 3 respe
tively)being sent from 3 di�erent appli
ations to the same I/O server. The amounts of a

essed data are 10, 1, 5 KB,respe
tively. Suppose that these requests are exe
uted a

ording to the FIFO10 order and the exe
ution timeof a request mat
hes its data size. The exe
ution time of the �rst request is 10 time units. The exe
ution timeof the se
ond request is only 1 unit but it has to wait 10 units from the �rst request : so the response time ofthe se
ond request is 10 + 1 = 11 units. Similarly, the response time of the third request is 10 + 1 + 5 = 16units. The total response time of the three requests is 10 + 11 + 16 = 37 units.Now we 
onsider another s
enario, the requests are exe
uted in the �Shortest Job First� (SJF) order. Thatmeans the smallest request will be exe
uted �rst. In this 
ase, the exe
ution order of the requests is 2, 3, 1. Theresponse time of the �rst request is 1 unit, the response time of the se
ond request is 1 + 5 = 6 units and theresponse time of the third request is 1 + 5 + 10 = 16 units. Thus, the total response time of the three requestsis only 1 + 6 + 16 = 23 units!In fa
t, ea
h s
heduling strategy is optimal for a parti
ular purpose. The FIFO strategy in our exampleis good to minimize the maximal response time while the SJF strategy 
an minimize the total response time.The 
riteria in our model are 
omplex. We try to maximize the overall performan
e by aggregating as manyrequests as possible but we have to assure a minimal fairness between appli
ations and avoid the starvationproblem11. The I/O requests s
heduling in our 
ontext is online non-
lairvoyant problem : the jobs (requests)arrive in time and their size are unknown in advan
e due to the aggregation pro
ess [3℄. So we propose twos
heduling algorithms whi
h are des
ribed below.5.1 Algorithm Weighted Shortest Job FirstFrom the above example, we 
an see that the algorithm SJF is e�
ient to minimize the total response time.However, this is a 
lairvoyant algorithm and it 
an 
ause the starvation problem with big requests. So wepropose to apply a variant of this algorithm that we 
all �Weighted Shortest Job First�. This algorithm 
anexploit the advantages of the SJF algorithm and avoid the starvation problem. The idea 
ame from the paper[22℄. In this algorithm, a virtual measurement of request size is used instead of its real size. Suppose that theexe
ution time of one request is Tr, the waiting time of this request sin
e its arrival is E and M is a 
onstantnumber; the virtual exe
ution time of this request 
an be 
al
ulated by:
Tv = Tr ∗

M − E

M
(2)Ea
h time the s
heduler have to 
hoose a request, it will sele
t the one with the smallest virtual size. Be
ausethe virtual size of a request will lower with time, the starvation problem is avoided. However, in our model,the size of one request is not �xed in advan
e: it 
an merge with other requests and be
omes bigger by virtualaggregation. In addition, the number and the arrival time of these requests are not known in advan
e, too. Sowe have modi�ed the above formula like this:

Tv =

i=n∑

i=1

Tvi (3)9read(x,y): read from o�set x to o�set y in the same �le10First In First Out, also known under First Come First Served algorithm11An appli
ation has to wait inde�nitely for the resour
eRR n° 5689



8 Adrien Lebre , Yves Denneulin , Thanh Trung VanIn this formula, n is the number of requests in the �aggregated request�, Tvi is the virtual exe
ution time ofthe ith request that is 
al
ulated by the formula 2.There is one more problem with this algorithm. In fa
t, if the size of an �aggregated request� is not limited, it
an grow with time and the starvation problem still remains if other appli
ations generate many small requestsin parallel. To ta
kle this problem, we 
hoose to limit the real size of an �aggregated request� by a threshold.If the aggregation pro
ess �nds a request that has a size greater than this threshold, it will �break� this requestinto two small requests: the size of the �rst one is M and size of the se
ond one is Tr − M .The algorithm WSJF is illustrated in the following example (�gure 3)At the �rst step, there are 4 requests from appli
ation A1, 3 requests from appli
ation A2. Suppose that theexe
ution time of ea
h request is 5 and M is 30. After the �rst aggregation pro
ess, the formula 3 givesus the virtual sizes of �aggregated requests� of A1 (=20) and A2 (=15). So the �aggregated request� ofA2 is exe
uted �rst.At the se
ond step, when the �aggregated request� of A2 has just �nished, 1 new request of A1 and 4 requestsof A3 
ome to the aIOLi server. These requests are reordered by the aggregation pro
ess. The waitingtime of the 4 �rst A1 is 15 units (this is the exe
ution time of the �aggregated request� A2 sele
ted inthe �rst step) and the waiting time of the new request A1 is 0; so the virtual size of �aggregated request�A1 is 4 ∗ 5 ∗ (30 − 15)/30 + 5 ∗ (30 − 0)/30 = 15 units while the virtual size of �aggregated request� A3is 4 ∗ 5 = 20. So the �aggregated request� A1 is sele
ted be
ause its virtual size is smaller even if its realsize is bigger than the real size of the the �aggregated request� A3.At the third step, while the �aggregated request� A1 is being exe
uted, other requests A3 
ome to the aIOLiserver. In this 
ase, the aggregation pro
ess returns two �aggregated requests� be
ause if there is only onerequest then the size of this request will be greater than M .
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Controlling and S
heduling Parallel I/O in Multi-appli
ation Environments 95.2 A variant of algorithm Multilevel Feedba
kThe se
ond algorithm that we want to try to apply in our model is a variant of algorithm Multilevel Feedba
k(MLF), [16℄, one of the algorithms for pro
ess s
heduling in the Unix operating system. This variant is des
ribedas follows:Ea
h time the s
heduler want to sele
t a request to exe
ute, it will propose a time quantum for ea
h requestin the waiting list. If the exe
ution time of a request is lesser or equal to this time quantum, this request
an be sele
ted.If there are several requests satisfying the sele
tion 
ondition (exe
ution time is greater or equal to the proposedtime quantum), the FIFO 
riterion will be applied between these requests.The proposed time quantum is not identi
al for every request. The �new� requests will re
eive smaller quantathan �old� requests. If a request is not sele
ted after a sele
tion time, it will be proposed a greater quantumin the next time (k time greater than the last time). This approa
h 
an avoid the starvation problembe
ause the proposed quantum for one request 
an grow by the multipli
ation fa
tor with the waitingtime.The �gure 4 illustrates this algorithm:At the �rst step, there are 4 requests of appli
ation A1, 3 requests of appli
ation A2 and 1 request of appli
ationA3. Suppose that the exe
ution time of ea
h request is 5 and the original quantum proposed is 10. Atthe �rst time, the requests are aggregated in the pre-pro
essing phase, then a time quantum is proposedfor ea
h request. Be
ause this is the �rst time these requests are in the waiting queue, the proposed timequanta are 10 for every request. The exe
ution times of �aggregated requests� A1 and A2 are 20 and 15,greater than the proposed quanta so they are not sele
ted. The exe
ution time of request A3 is 5, thisrequest satis�es the sele
tion 
ondition so it is sele
ted in this round.At the se
ond step, when the request A3 is being exe
uted, others requests A2 and A3 
ome to aIOLi server. Therequests A2 are aggregated in the pre-pro
essing phase. Be
ause this is the se
ond time the �aggregatedrequests� A1 and A2 are in the waiting queue, they are proposed a greater quantum. In this example we
hoose the multipli
ation fa
tor k = 2, so the proposed quanta for these two requests are 10 ∗ 2 = 20. Therequest A3 is proposed an original quantum (10) be
ause this is the �rst time this request is in the queue.The size of requests A1, A2, A3 are 20, 25, 5 respe
tively while their quanta are 20, 20, 10. The requestsA1 and A3 satisfy the sele
tion 
ondition, so the 
riterion FIFO is applied to 
hoose a request to pro
ess.In this 
ase the �aggregated request� A1 is sele
ted.Similarly, while the request A1 is being exe
uted, others requests A2 and A3 
ome to aIOLi server. After thepre-pro
essing phase, the size of �aggregated requests� A2 and A3 are 30 and 20. Be
ause this is the thirdtime the request A2 is in the queue the proposed quantum for this request is 20 ∗ 2 = 40 and the proposedquantum for the request A3 is 10 ∗ 2 = 20. The two requests A2 and A3 satisfy the sele
tion 
ondition,so the �aggregated request� A2 is sele
ted a

ording to the FIFO order.5.3 Parallel �le system 
onstraintIn this se
tion, we dis
uss the 
onstraint related to the parallel �le systems. In these systems, the data are oftendistributed on several storage nodes12 (data striping) . Sin
e data of a request 
an be distributed on severalnodes, we must 
onsider the relation between these sub-requests of the same appli
ation. For example, assumethat we have two requests R1 (of appli
ation A1) and R2 (of appli
ation A2) of size of 15 and 10 KB and two I/Onodes having the �stripe size� of 5 KB. Then R1 is devised in 3 sub-requests and R2 is devised in 2 sub-requests(the size of ea
h sub-request is 5 KB). Assume that we use strategy WSJF without 
he
king the 
onstraintsbetween sub-requests of the same appli
ation and the exe
ution time of ea
h sub-request 
orresponds to its size,i.e. 5 time units for example. Then, as shown in the �gure 5, the exe
ution time of R1 is 15 units and R2 is 10units; thus the total response time of the two requests is 25 units. By taking into a

ount of data distribution,if sub-requests of A2 on both I/O is 
arried out before sub-requests of A1, the exe
ution time of R2 is of 5 unitsand R1 of 15; in this 
ase the total response time is 20 units.12This distribution redu
es 
ongestion problems sin
e a

esses are balan
ed over I/O nodes.RR n° 5689



10 Adrien Lebre , Yves Denneulin , Thanh Trung Van

q = 20, T = 20 q = 20, T = 25 q = 10, T = 5

A1 A1 A1 A1 A2 A2 A2 A2 A3A2

A1 A1 A1 A1

Pre−processing (offset dependance)

A3 A2A1

A2

A2 A2 A2 A3A2

A2 A2 A2 A2 A3

A2 A2 A2

q = 10, T = 20

A1A1 A1 A2 A2

A2 A2 A2 A2 A3

A2 A2 A3 A3

A2 A2 A3A3A3

q = 40, T = 30 q = 20, T = 20

A2 A2 A2 A3 A3

A1A1

A1 A2  A1 A2 A1 A3A1 A2

A1 A1 A1A1

A1A1 A2 A2 A2 A3

q = 10, T = 15 q = 10, T = 5

A3

A3A3

Processing                      WaitingStep 1

A3

Processing                      WaitingStep 2

Step 2

Scheduling

Pre−processing (offset dependance)

Scheduling

Pre−processing (offset dependance)

Processing                      Waiting

Scheduling

A1 A1 A1 A1 A2 A2 A2A2 A3A2

Figure 4: Variant MLF

A2 A1 A1

A1 A1A2

I/O
Node 1

I/O
Node 1

Node 1
I/O

Node 1
I/O

I/O
Node 2

I/O
Node 2

I/O
Node 2

A1A2

T vir = 10

A1

T vir = 15  

T vir = 5 T vir = 10

A1 A2

A1A2

T vir = 10 T vir = 15  

A2A1

A2A1

T vir = 5 T vir = 5

I/O
Node 2

A2A1 A1

Processing                     Waiting

Pre−processing (offset dependance)

Scheduling (WSJF) Scheduling (WSJF)

Scheduling (SOJF) Scheduling (SOJF)

Figure 5: Constraint between sub-requests
INRIA



Controlling and S
heduling Parallel I/O in Multi-appli
ation Environments 11The above example shows the importan
e of 
onstraint between sub-requests in the parallel �le systems.A simple idea is to syn
hronize sub-requests of the same appli
ation so that they are 
arried out at the sametime. A possible solution is to apply a 
ommon sele
tion 
riterion for all sub-requests belonging to the sameappli
ation. For example, we 
an apply strategy WSJF in a independent way to ea
h I/O queue while takinginto a

ount the total size of the request for the sele
tion 
riterion (instead of the size of sub-requests). Thismethod is similar to the approa
h �Shortest Outstanding I/O Demand Job First� or SOJF, [4℄. In this examplethe request R2 has the smallest size between the two requests; approa
h SOJF sele
ts sub-requests of A2 (totalsize is 10) and then sub-requests of A1 (total size is 15) whi
h 
ould be better. However this method, like methodSJF, 
an involve starvation problems with the requests having big total size. So we 
an use the weighting methodexploited in algorithm WSJF to treat this problem. A
tually, we have not integrated this last aspe
t into ourprototype, this work is an additional prospe
t for this work and will require a more thorough study.6 ExperimentsBased on the prin
iples dis
ussed in the previous se
tions, we built a se
ond prototype of the aIOLi solution.Developed in C, this se
ond implementation has to be linked to the appli
ation and 
ould be used in 
oordinationof the former version.6.1 Prototype implementationThe system is based on a traditional 
lient-server model, �gure 6: a 
lient module that overloads the POSIX
alls is linked to ea
h appli
ation and a server daemon is deployed at a aIOLi server to 
entralize and regulatethe I/O requests of 
lient. With regards to the size of the 
luster, the aIOLi server 
ould be deployed on the�le server node as well as a distin
t node. The 
lient requests are transmitted by a t
p 
hannel to the aIOLiserver. Ea
h request is kept in a 
orresponding queue a

ording to the 
on
erned �le, a

ess o�set, requestsize and arrival time on the server side. A �timer13� based approa
h enables to notify 
lients in time when thepredi
tion mode is enabled. The s
heduling poli
y as well as the predi
tion mode are set at the laun
h time.
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Figure 6: Con
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12 Adrien Lebre , Yves Denneulin , Thanh Trung Van6.2 ExperimentationsThe testing system is a sub part of the grid �grid5000�14 lo
ated at INRIA south site (Sophia-Antipolis -FRANCE). Ea
h node (a IBM eServer 325) is 
omposed by two AMD opteron (2GHz), 2GB RAM and a 80GBIDE hard-drive (bandwidth estimated to 57MB/s by hdparm 
ommand). The 
luster is inter
onne
ted by agiga-ethernet network. The operating system Debian Linux was used. A dedi
ated NFS server (version 3, TCP,32Kb read size) and several SMP nodes have been exploited.The ben
hmarks 
orrespond to the 
ases mentioned in se
tion 3 : multi-node 
oordination (one appli
ationdistributes on several nodes) and multi-appli
ation 
oordination (
on
urren
y between many appli
ations dis-tribute on several nodes). In the �rst experiment, se
tion 6.3, one MPI appli
ation (8 instan
es) de
omposes a2GB remote �le stored on the NFS server. It enables to evaluate the performan
e of our solution in presen
eof parallel a

esses (automati
 dis
overing of parallel patterns). The se
ond ben
hmark, se
tion 6.4 
on
ernstwo MPI appli
ations deployed on two distin
t nodes (ea
h 
omposed of 4 instan
es) : they de
ompose 
on
ur-rently two di�erent �les (2*2GB) stored on the NFS server. Thanks to this test, we analyzed how our solutionhandles the 
on
urren
y between two parallel I/O appli
ations and how its impa
ts on the fairness 
riterion(i.e. di�eren
e of 
ompletion times). The last experiment, se
tion 6.5 
onsists in observing the behavior ofsu
h a approa
h in a �real� 
ase : 5 distin
t MPI appli
ations de
ompose 5 �les in a 
on
urrent manner. Toavoid the 
a
he in�uen
e, ea
h experiment uses a di�erent �le at ea
h exe
ution. Every de
omposition havebeen exe
uted with di�erent �le a

ess granularity to analyze the in�uen
e related to the number of messagestransmitted to the aIOLi server. In addition, we laun
hed ea
h ben
hmark on both ar
hite
tures (�gure 6) :NFS and aIOLi solution on the same and then on distin
t nodes.6.3 Multi-node 
oordination6.3.1 Dete
tion of parallel a

ess s
hemaIn the preliminary tests, we qui
kly observed that the use of the algorithms WSJF or MLF were not suitedto maximize �virtual aggregation� within one appli
ation whi
h led to bad performan
e. We slight modi�edthese algorithms in order to obtain more virtual aggregations. The following example illustrates this idea:suppose that we have four requests of the same size that need to be sent to the same data server (read(10,20),read(20,30), read(30,40), read(40,50) on the same �le 15). Suppose that requests read(10,20) andread(30,40) 
ome to the aIOLi server at the same time while the requests read(20,30) and read(40,50)
ome to aIOLi server later. These requests are disjoint, so they 
an not be aggregated. At the next step, thesele
tion 
riterion of the two algorithms are applied to sele
t a request to be exe
uted. Be
ause the requestsread(10,20) and read(30,40) have the same size and the same arrival time they have the same priority.However, if the request read(30,40) is sele
ted and exe
uted before the request read(10,20); in the next stepwhen the requests read(20,30) and read(40,50) 
ome to the aIOLi server, the waiting queue will 
ontaindisjoint requests: read(10,20), read(20,30) and read(40,50). On the other hand, if the request having thesmallest o�set, read(10,20) is sele
ted, the waiting queue will 
ontain the requests read(20,30), read(30,40)and read(40,50) that 
an be aggregated in one request. From these observations, the �rst idea is to sele
tthe request having the smallest o�set among the available requests while keeping the prin
ipal goal of ea
halgorithm. In the algorithm WSJF, we have introdu
ed a jun
tion 
oe�
ient: between two requests, a requestwill be sele
ted if its o�set is smaller than the se
ond request's o�set and its virtual size is not greater thana determined ratio of the se
ond request. We set this ratio to 10%. In the algorithm MLF, the FIFO 
riteriabetween two requests are repla
ed by the o�set 
riterion if they 
on
ern the same �le (the smallest o�set ispreeminent).6.3.2 ResultsThe �gure 7 (a) and 7 (b) illustrate the required time to make the de
omposition over 8 MPI instan
es. The�Posix� 
urve 
orresponds to the 
lassi
al read() 
all, the �Two Phases� to the 
olle
tive I/O me
hanism provideby ROMIO [25℄. The 4 last 
urves show the results a

ording to the related s
heduling poli
y ; predi
tion modeis disabled and enabled (XXXX-TIME).From a global point of view, we 
ould see that the aIOLi server doesn't really impa
t on NFS performan
ein this �rst 
ase. The 
urves WSJF, WSJF-TIME, MLF and MLF-TIME have the same form on both graphs.However we 
ould note a slightly overhead for smallest granularity due to the importan
e of network messages.14http://www.grid5000.fr/ .15read(x,y) : read from o�set x to o�set y in the �le. INRIA



Controlling and S
heduling Parallel I/O in Multi-appli
ation Environments 13So let's fo
us on the graph 7 (a) : for the mode without predi
tion, no pro�t is brought by the two algorithmsfor the a

esses less than 32 Kb. Indeed for small a

esses (less than 32 Kb), ea
h request between 1Kb and32Kb generates a NFS read request of 32 Kb. So many requests 
an be dire
tly satis�ed by the 
lient 
a
he.In the aIOLi approa
h, every request (regardless of granularity a

ess) are sent to the aIOLi server where theyare syn
hronized and maybe aggregated. Thus, for ea
h request an overhead of T is added (se
tion 4.1). Forexample, with a 2GB �le de
omposition at 8 Kb granularity, the number of ne
essary requests are 256000. Inour network, the syn
hronization delay is about 100µs, so 27 se
onds are ne
essary to realize the syn
hronizationpro
ess.In addition, we 
an observe that the jun
tion 
oe�
ient used in WSJF is not initialized with a su�
ientvalue. The requests are poorly reordered (bad dete
tion of parallel a

ess s
hema), the 
lient does not bene�tfrom the 
a
he and on the 
ontrary generates a multitude of disjoined a

esses. The MLF approa
h pro�tsquite well from the 
a
he e�e
t so it generates a small overhead 
ompared to the standard approa
h.
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(b) aIOLi server on a dedi
ated nodeFigure 7: 2GB �le de
omposition by one appli
ation8 MPI instan
es de
ompose a �le stored on a dedi
ated NFS server. The �Two Phases� 
orresponds to the 
olle
tiveI/O operations supplied by ROMIO.Throughout the experiment, the algorithm MLF behaves better be
ause it always 
hooses the request havingsmallest o�set whi
h maximizes �virtual aggregation� latter. From 32 Kb, the aIOLi approa
h be
omes powerfulfor the two algorithms ; the POSIX requests 
an not be satis�ed by the 
lient 
a
he and as 
onsequen
egenerate 
on�i
ts at the �le server side whi
h have to manage them in parallel. For larger granularity, therequired requests number for the de
omposition be
omes less (for 4MB only 512), and the syn
hronizationtime be
omes transparent. Finally, without exploiting tedious routines like �Two Phase approa
h�required(MPI_File_Set_View(), MPI_File_Read_All(), ...), we rea
h similar performan
e (even better for �lea

ess between 16KB to 1MB) with the MLF approa
h.RR n° 5689



14 Adrien Lebre , Yves Denneulin , Thanh Trung Van6.3.3 Observed problemsRegarding the performan
e rea
hed in our former implementation [11℄, we tra
ed our appli
ation to analyze andunderstand why we 
ould not provide better gains. We dis
overed two ine�
ient behaviors that we des
ribe inthe following part.Shift phenomenonIn spite of the 
hanges des
ribed in se
tion 6.3.1, we 
ontinued to observe a problem that we 
all �shiftphenomenon�: the order and the periodi
ity of the arrival of requests 
oming from the various pro
esses aredependent on a greater number of fa
tors than in the pre
eding version, [11℄. Indeed, there is a strong dependen
ebetween the performan
es and the s
heduling poli
y of the pro
esses established by the Linux system within asame node. A re�e
tion window used in the anti
ipatory s
heduling approa
h had been integrated to partly solvethe problem. In our 
ase, this dependen
e is ampli�ed by the number of nodes taking part in the de
ompositionsin
e the s
heduling strategy of ea
h node is independent. Moreover, we have to take into a

ount the networkfa
tors. Thus a pro
ess 
an deliver a new request as soon as its last request was treated whereas another hasa mu
h longer re-emission period. The �gure 8 illustrates this phenomenon: four pro
esses take part in thede
omposition of the same �le. At step 1, the request of pro
ess P0 arrives late 
ompared to the other requests(P1, P2, P3). The requests of P1, P2, P3 are 
ontiguous and are aggregated in the same �virtual� request. Whenthe P0 request arrives to the aIOLi server, the a

eptan
e message for the request P1 was already delivered,so it 
annot be aggregated in this �virtual� request and is inserted in the queue. It is exe
uted at step 2 afterthe treatment of the whole previous aggregated request. When the request of P0 is being exe
uted, the newrequests of P1, P2 and P3 arrive and are aggregated in step 3. The s
enario is repeated in the next steps.Requests 
oming from P0 
an never be aggregated with requests P1, P2, P3. This problem 
an degrade 20% ofoverall performan
e of the system.Predi
tion problemThe laun
hing of new tests enabled us to dete
t an additional problem related to the predi
tion method:when a predi
tion is erroneous, it will in�uen
e the following predi
tions. If the duration of a request is givenin a false way, the a

eptan
e message of the following request will be erroneous and the new request will begintoo early (
on�i
t of a

esses, �gure 2 (
)). There will be a 
onsiderable performan
e redu
tion sin
e the twoa

esses will be treated in parallel. In a similar way, the se
ond predi
tion will be also false, followed by theperforman
e redu
tion and will generate a new derive on the following one and so on. The di�eren
e betweenpredi
ted and real time will grow with time. We have slightly improved our system in order to take into a

ountthis problem with ea
h new predi
tion. However, with the a

esses of small size, we have not yet been able torea
h an exa
t predi
tion. A similar problem was presented in [23℄.6.4 Multi-appli
ation 
oordinationThis experiment is done to evaluate our approa
h with the exe
ution of many parallel appli
ations in a 
luster.The appli
ation in the previous test is re-exe
uted on two distin
t nodes (4*2 instan
es MPI). Ea
h appli
ationrealizes a de
omposition on a 2GB �le stored on a remote NFS server. The results are presented in the �gures9 (a) and 9 (b). Like the previous experiment, the aIOLi server doesn't impa
t on the NFS server.The approa
h without predi
tion generates an important overhead for low granularity due to the number ofsyn
hronization messages (2*2GB to de
ompose by blo
k of 8K) and the syn
hronization delay implied betweentwo demands.In addition, we 
an noti
e that even in the MLF with time predi
tion, the performan
es are worse than theones given by the Posix approa
h. The MLF poli
y implies lot of swit
hes between the requests from the �rst
P1  P2  P3  P0 P1  P2  P3  P0

Rd(0,10) Rd(50, 60; 60,70; 70,80)Rd(10,20; 20,30; 30,40) Rd(40,50)

.....

Step 1 Step 2 Step 3 Step 4

Figure 8: Shift requestArrival order of messages has an in�uen
e on the aggregation pro
ess. In this example, requests of P0 
an never beaggregated. INRIA
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heduling Parallel I/O in Multi-appli
ation Environments 15appli
ation and the se
ond one. These �I/O swit
hes� do not bene�t of 
a
he me
hanism. For larger a

esses,we 
an observe a slight fall of the performan
es that will be 
on�rmed in the next experiment (se
tion 6.5). Itwould be interesting to look further into this behavior and to analyze if the degradation of the predi
tions isstronger for large a

esses and/or in multi-appli
ation mode. It is in parti
ular the same for the WSJF approa
h.From a global point of view, the 
olle
tive I/O approa
h provided by ROMIO gives the best performan
e inthis 
ase. A
tually, The �Two Phase� approa
h sends only for 4MB requests (ROMIO internal size bu�er). Inaddition, sin
e two appli
ations are exe
uted, the NFS server has to pro
ess only two requests at ea
h time.
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(b) aIOLi server on a dedi
ated nodeFigure 9: 2*2GB �le de
ompositionsTwo appli
ation (4*2 MPI instan
es) de
ompose two �les stored on a dedi
ated NFS server. The two appli
ations areindependent and work on various �les.One of the goals of this experiment is to evaluate the performan
e brought by our approa
h16 but also tostudy the fairness 
riterion between the appli
ations. The importan
e of �nding an a

eptable tradeo� betweene�
ien
y (maximization of the bandwidth) and fairness 
riterion. The �gure 10 illustrates this parameter :the di�eren
e between 
ompletion times of ea
h appli
ation is measured. The interest of su
h a 
riterion is toobserve if between two appli
ations requiring the same amount of data, one is not starved by the other one.The standard POSIX approa
h provide signi�
ant di�eren
e between the 
ompletion time of both appli
a-tions for small a

esses : ea
h request is treated in a 
ompletely independent manner and is distributed on the2*2GB data (
ertain requests are favored in 
omparison with others). The WSJF approa
h seems to be a�e
tedby the shift phenomenon and gives results whi
h require furthermore analysis. Finally, the MLF algorithm withpredi
ted time provides a very good ratio fairness/performan
e for a

ess larger than 32KB. For instan
e, ata

ess granularity of 4 MB, the di�eren
e of 
ompletion time between the two appli
ations is only about 10se
onds for a pro�t 
lose to 50% (in 
omparison with the Posix approa
h).16Parallel a

ess disovery in multi-appli
ation mode.RR n° 5689
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(a) aIOLi server on NFS
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(b) aIOLi server on a dedi
ated nodeFigure 10: 2*2GB �le de
ompositions - FairnessFairness 
riterion, variation between 
ompletion times is a

eptable for the algorithm MLF 
ompared to its pro�t.(
f. �gure9).
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heduling Parallel I/O in Multi-appli
ation Environments 176.5 To the Multi-appli
ation environmentsThis experiment is done to evaluate our approa
h in a �real� 
ase : various independent appli
ations are exe
uteda

ording to the 
luster bat
h s
heduler without regarding if they 
ould be 
on
urrent on the �le server. Morepre
isely, 5 MPI appli
ations are exe
uted : the �rst one is 
omposed of 6 MPI instan
es distributed on 3 nodeswhi
h de
ompose 1.5GB �le, the se
ond one is relied on 4 MPI instan
es distributed on two nodes to de
ompose1GB, the third one, the fourth and the last one are based on 2 MPI instan
es all distributed on one node andmake respe
tively 0.8GB, 500MB and 200MB �le de
omposition. The results are presented in �gure 11. Theben
hmark has been exe
uted for Posix, �Two Phases�, MLF and MLF with predi
ted time mode. We 
an seethat the results are quite promising. The MLF approa
h gives the best performan
e (even better than the MPII/O approa
h). The fairness quality is 
urrently being evaluated and should be available in the �nal version ofthe paper. We want to analyze the provided time by our s
heduling strategies to the appli
ations a

ording totheir required �le size.
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Figure 11: 4GB - 5 �le de
ompositionsMany independent MPI instan
es de
ompose several �les stored on a dedi
ated NFS server. The total size of dataretrieved from the NFS server is 4GB. aIOLi server is deployed on a dedi
ated node.7 Related worksA lot of works have been 
arried out on the parallel I/O. The presented ar
hite
ture is similar to the libraryPANDA, [21℄, (using of master servers in 
harge of I/O request management) but it is only spe
i�
 for input andoutput of multidimentional arrays. [5℄ suggests a new approa
h to handle non 
ontiguous a

ess from individual
lient. This te
hnique, 
alled �list I/O� uses ideas 
lose to the stream-based I/O developed in PVFS or to thelio_listio 
all (de�ned in the POSIX standard): a list of tuples o�set/length represents several non 
ontiguousI/O requests. NFS V4, [1℄, introdu
es a similar te
hnique 
alled �COMPOUND pro
edures� to redu
e the RPCoperations. Besides, many parallel �le systems [12, 13, 19, 6, 14, 15, 20℄, were developed in order to supportthe 
on
urrent a

esses from many 
lients. These �le systems distribute data on many disks and are usuallyintegrated di�erent aggregation te
hniques to ameliorate the transfer time. They are e�
ient but usually requirespe
i�
 APIs whi
h, as we mentioned above, imply deep knowledge of their internal me
hanisms.There were many resear
hes about I/O s
heduling but none �tted our need. For example, [22, 9℄ presentsmany disk s
heduling algorithms. In [18℄, the author presents an approa
h 
alled �rea
tive s
heduling� allowingto 
ombine di�erent s
heduling algorithms within a single system for a 
orre
t optimization for a given systemworkload. [10℄ proposes many heuristi
 algorithms for parallel I/O s
heduling but they use a 
entralized bat
h-oriented s
heduling model requiring a large amount of 
ontrol information whi
h is not always available for manysystems. In [8℄, the authors propose a non-
entralized s
heduling poli
y applied for their Cluster�le system, butthis poli
y is based on some spe
i�
 assumptions so it is not portable.
RR n° 5689



18 Adrien Lebre , Yves Denneulin , Thanh Trung Van8 Con
lusionThis paper has presented the aIOLi system to optimize I/O requests within a 
luster. Prin
iples, 
onstraintsas well as sele
ted solutions (with their drawba
ks) have been shown. Yet, our approa
h has the asset to betransparent for the users as it uses the ubiquitous C API (open/read/write/
lose). The experimental resultshave 
on�rmed the bene�ts of su
h an approa
h (mainly the MLF strategy, whi
h in the multi-appli
ationenvironments,is better than ROMIO and POSIX at all granularities).Main di�
ulties 
onsist in the syn
hronization of I/O requests on the �le server and in establishing themulti-
riterion s
heduling algorithms (performan
e and fairness). The predi
tive approa
h, whi
h, in theory,should redu
e the syn
hronization delays, be
omes quite 
omplex in pra
ti
e. The di�
ulty of establishing apredi
tion reliable enough with the a

esses of small size is the main limitation. Likewise, further investigationshave to be 
arried out to understand the slight degradation for larger requests. However, we hope to redu
epartly this problem by using an improved predi
tion model whi
h is similar to the model used in the NetworkWeather Servi
es [26℄ tool to in
rease the reliability of the predi
tions.The dete
tion of a

ess patterns implemented in the �rst version of aIOLi system be
omes more and more
omplex. Lots of fa
tors, su
h as pro
ess s
heduling poli
y, the network laten
y, the network load may alter there
eption order of I/O requests. Using simple jun
tion 
oe�
ient in the WSJF algorithm seems not to be enoughand requires a more detailed analysis. At the 
ontrary, the MLF approa
h has shown that with the a

essesbigger than 32K, the ratio fairness/performan
e is quite promising. We plan to study the 
onstraints impliedby a real aggregation model to assess the tradeo� between potential bene�ts and the 
osts of the me
hanisms(distributed 
a
he).The evaluation against the fairness 
riterion for the latest experiments is 
urrently in progress. Meanwhile,work on a �ner-grain s
heduler is 
arried out to provide an extra-e�
ien
y when traditional I/O programs (su
has unix 
at 
ommand) are laun
hed. In su
h a 
ase, in
reasing the wait delay may indeed lead to getting themaximum from the read-ahead me
hanisms before swit
hing to another I/O queue.Last but not least, the point 
onsisting in in
luding to the s
heduling algorithms the parallel �le system
onstraints (the 
urrent algorithms are applied for 
entralized data servers su
h as NFS) has to be ta
kled. Thisstrategy might also be improved by giving spe
i�
 hints from the bat
h s
heduler to the aIOLi system in orderto provide for instan
e, di�erent levels of quality of servi
e (best e�ort, minimal bandwidth... ).Referen
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